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We consider the electronic transport in a mesoscopic metallic spin glass. We show that the distribution
of overlaps between spin configurations can be inferred from the reduction of the conductance fluctuations
by the magnetic impurities. Using this property, we propose new experimental protocols to probe spin
glasses directly through their overlaps.
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Understanding the physics of glasses remains one of the
deepest experimental and theoretical challenge in con-
densed matter. Considered as the simplest glassy phases,
spin glasses have attracted considerable attention both
experimental and theoretical during more than 30 years
[1,2]. In spin glasses (SG), magnetic moments occupying
random positions in a host lattice get frozen with random
orientations below a spin glass transition temperature TSG.
The initial theoretical efforts were devoted to the solution
of equilibrium lattice models. This culminated with the
mean-field solution of the fully connected Sherrington-
Kirckpatrick (SK) model [3], now proven to provide the
exact free energy [4,5]. However, an intense theoretical
debate remains around the relevance of the SK model to the
thermodynamic properties of three dimensional spin
glasses. Although the initial theoretical studies were fo-
cused on the thermodynamics, it was long known that spin
glass materials drop out of equilibrium below TSG, and
never reach a steady state. This has led to the development
of various models of nonequilibrium spin glass dynamics
including a scaling approach [6,7], phenomenological trap
models [8], and more recently aging studies of the mean-
field models (see [9] and references therein). In the sim-
plest scaling approach to spin glasses, the thermodynamics
below TSG consists, in contrast to mean-field solutions, of a
doubly degenerate broken Z2 symmetry ground state (for
Ising spins). All the nontrivial properties of the spin glass
state are then assumed to be consequences of the extremely
slow relaxation toward this ground state resulting from the
slow growth of small domains (droplets) of equilibrium
phase, similar to ferromagnet quench.

In view of the current understanding of the spin glass
state, it is a worthwhile goal to propose new probes of their
properties. A central quantity in current theoretical de-
scriptions of spin glasses is the overlap between two spin
configurations defined as (Nimp being the number of spins
and hith the thermal average)

 Q12 �
1

Nimp

XNimp

i�1

h ~S�1�i � ~S
�2�
i ith: (1)

Configurations overlaps gives access to distances between
spins configurations, as opposed to conventional probes

like spin susceptibility. For configurations corresponding
to equilibrium states in the same sample, overlap distribu-
tion is the equilibrium order parameter [2]. For configura-
tions taken in the same quench but at different times,
overlaps characterize the glass aging [9]. Besides, other
physical effects such as temperature or disorder chaos [10]
are described in terms of spins overlaps. It is the purpose of
this Letter to propose the first experimental probe of these
central quantities via the study of conductance fluctuations
in mesoscopic metallic spin glasses.

The dependence of the average conductance fluctuations
on magnetic impurities was first analyzed by Al’tshuler
and Spivak [11]. Soon after, Feng et al. [12], building on
these results, predicted within the scaling approach a
chaotic behavior of conductance as a function of tempera-
ture in a spin glass. Parallel to these theoretical develop-
ments, experimental measurements of conductance
fluctuations in metallic spin glasses by de Vegvar et al.
[13] (see also [14]) demonstrated for the first time a clear
signature of the spin glass freezing in the time-reversal
antisymmetric part of the four terminal conductance. Later,
several experiments focused on noise measurements in
Cu:Mn [15] and Au:Fe [16] (see also [17] for similar
studies in the doped semiconductor).

However, a connection between these theoretical and
experimental analyzes and spin glass theories was difficult
as none of these approaches allowed a simple interpretation
within the spin glass theoretical framework. This motivates
a reexamination of the description of conductance fluctua-
tions in a spin glass in relation with spin overlaps.

We consider a mesoscopic metallic sample of size L
containing magnetic impurities. These impurities provide
three different contributions to the scattering potential for
the conduction electrons: (i) a scalar potential V�r� �P
ivo��r� ri�, where ri denotes the positions of impuri-

ties, (ii) a spin coupling VS � J�T�
P
i�1

~Si � ~�e, and (iii) a
spin-orbit contribution Vso� ~k1; ~k2� � iVso�k̂1 � k̂2� � ~�s1s2

.
The magnetic impurities interact with each other via a
RKKY interaction [18]

P
i�jJij ~Si � ~Sj, and at high enough

impurity concentrations, the corresponding spin glass tran-
sition temperature TSG is larger the Kondo temperature TK.
In this regime, the local moments remain unscreened at
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TSG and as a result, due to the random signs of the cou-
plings, they freeze into the spin glass state for T < TSG

[18]. In the spin glass state, the frozen spins act on the
conduction electrons just like a classical random magnetic
field. In the rest of the letter, we will focus on this regime
(TSG > T � TK) where transport properties simply result
from coherent diffusion of electrons by both a classical
random magnetic field and the associated scalar potential.

Let us start by recalling known results about the fluctua-
tions of conductance induced by a scalar random potential
V�r�. We denote byL� the dephasing or inelastic scattering
length, which is considered larger than the sample size L
(mesoscopic regime). The associated inelastic scattering
rate is �� � @=�2��� � D@=�2L2

��, D being the diffusion
constant in the sample. For the sake of clarity, we focus on
the longitudinal G � Gxx, although the following discus-
sion extends naturally to other components of the conduc-
tance [19]. In this mesoscopic regime, the conductance G
is a function of the random scattering potential V�r�, and in
the weak disorder limit, its distribution is approximately
gaussian (see [20] for a recent discussion). Its average
incorporates weak-localization corrections [21,22], and
its variance, describing the sample-to-sample fluctuations,
contains contributions from both fluctuations of the diffu-
sion coefficient and of the density of states (see [23] for a
pedagogical introduction). With only a scalar potential
V�r� and in the so-called diffusion limit, the fluctuations
of the conductance read for weak disorder:

 h��G�2iV � F���� � 6
�
e2D

hL2

�
2X
~q

�Dq2 � ���
�2; (2)

where �G � G� hGiV . For a wire where diffusion takes
place in one-dimension (1D) between two absorbing res-
ervoirs, the variance (2) reduces to h��G�2iV �
8=15�e2=h�2, the so-called universal conductance fluctua-
tions in the limit L	 L�. In the other case L� < L, these
fluctuations reduce to h��G�2iV ’ �e2=h�2�L�=L�

4�d with
a geometrical factor.

How are these results modified in the presence of the
random field component VS of the scattering potential?
First, those spins that can flip during the electron diffusion
time (either weakly connected or maximally frustrated)
will contribute to the enhancement of the inelastic scatter-
ing rate ��. We assume that the inelastic coherence length
of the sample, including the effects of these quasifree
spins, is still larger than the system size at low enough
temperatures. The remaining spins are considered as clas-
sical random fields, frozen on the electrons diffusion time
scale. These random fields ‘‘flip’’ the electron spin, and
thus provide a finite lifetime to different diffusion spin
states. Using a semiclassical approach allows us to con-
sider a given realization of spins, without averaging. A
diffusion path is labeled by the sequence of encountered
impurities, ordered chronologically. At each impurity j, the

electron’s spin is rotated according to Rj � eiJ ~Sj� ~� �
cos�JS� � i sin�JS�Ŝ � ~�. The end action of the random
fields along the path is encoded by the chronological
product

Q
jRj. Expanding this product in the limit of

weak J, and using the central-limit theorem we obtain
the typical magnetic dephasing rate of an electron state
as �m � 2��0nimpJ

2hS2ith, where �0 is the density of
state, nimp the concentration of impurities and hith means
an average over thermal fluctuations. Note that in doing so,
we have neglected all spatial spins correlations, a coherent
assumption in a spin glass state. Moreover, we have as-
sumed a good impurities sampling by typical diffusion
path, approximating the number of impurities along typical
path by Nimp.

Coming back to the conductance fluctuations, we as-
sume that both sources of disorder V�r� and VS�r� can be
treated as independent from each other (the orientation of
the frozen moment is not directly correlated with the
position of the single impurity). We focus on the average
(over V) correlations between conductances in a given
sample V�r� with two different spin configurations fS�1�j g

and fS�2�j g

 ��G�2
S�1�S�2�

� h�G�V; fS�1�j g��G�V; fS
�2�
j g�iV (3)

where �G�V; fS�1�j g� � G�V; fS�1�j g� � hG�V; fSjg�iV . The
weak disorder expression of this average correlation is
obtained similarly to (2) using standard diagrammatic
techniques (see [11,23,24]). In doing so, one formally
considers the diffusion of the so-called Cooperons and
diffusons. They can be viewed as the coherent propagation
of pairs of electrons along a path in the same chronological
order (diffuson), of in reversed orders (Cooperon). In the
correlations (3) the two components of the diffuson or
Cooperon see a different spin configuration. The action
of the magnetic impurities on their diffusion is

 

Y
j

ei�JS�Ŝ
�1�
j � ~�

�1�

e
i�JS�Ŝ
�2�
j � ~�

�2�

; (4)

where the 
 sign depends on the nature of the diffusive
object. The diffuson or Cooperon states carry a pair of
spins 1=2, and are naturally decomposed into a singlet and
triplet states. In a given spin configuration ( ~S�1�j � ~S�2�j ),
only the triplet states couple to these random magnetic
fields while for two different spin configurations fS�1�j g,

fS�2�j g, both the singlet and the triplet states acquire a finite
diffusion lifetime. From Eq. (4), we obtain the typical
dephasing rate of these composite diffusons in the limit
of weak J: �D;Sm � �m�1�Q12�, �

D;T
m � �m�1�

1
3Q12�

where Q12 is defined in (1). The scattering rates for the
Cooperons follow by Q12 ! �Q12. Now plugging these
scattering rates back into the diffusion propagators, we
obtain the following expression for the average correla-

PRL 100, 057207 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
8 FEBRUARY 2008

057207-2



tions:

 ��G�2 � 1
4F��

D;S
m � ��� �

3
4F��

D;T
m � �so � ���

� 1
4F��

C;S
m � ��� �

3
4F��

C;T
m � �so � ���; (5)

where we have included the spin-orbit and inelastic de-
phasing rates. When (some) magnetic dephasing lengths
are smaller than L (<L�, Lso), the fluctuations are domi-
nated by the smallest dephasing rate (one of the singlets).
For �� 	 Ec 	 �m�1�Q12�, we obtain for D � 2:

 h�G�fS�1�j g��G�fS
�2�
j g�iV /

�
e2

h

�
2 Ec
�m�1�Q12�

; (6)

where Ec is the Thouless energy. Crucially, these correla-
tions depends on the quantity Q12, which is called the spin
overlap and plays a central role in the description of spin
glasses. Indeed, the distribution of Q12 is the spin-glass
order parameter in the mean-field theory.

Before pursuing further into the spin glass considera-
tions, we first discuss the disorder averaging in experi-
ments. In the above analysis, we have carefully avoided
to average over spin configurations while at the same time
averaging over the scalar potential. However, in experi-
ments, both disorder originates from the same source, i.e.,
the random positions of magnetic impurities. We thus need
to propose an experimental setup that simulates an average
over a scalar potential while keeping the distribution of
spins (quasi-) fixed. Experiments usually rely on the ergo-
dic hypothesis and probe these fluctuations by varying the
magnetic field or the Fermi energy. Physically the origin of
conductance fluctuations are phase-coherent contributions,
encoded into the Cooperon and diffuson. A change in
disorder changes the various diffusion paths, and the cor-
responding interferences. However, the various phases can
also be modified either by the orbital effect of a uniform
magnetic field or a change of the Fermi energy, hence the
ergodic hypothesis. Averaging over the Fermi energy can
be achieved in doped semiconductor spin glasses by apply-
ing a gate potential [17,25]. In metallic spin glasses, one
has to resort to the magnetic field sampling and the average
in Eq. (3) is replaced by h�G�V; fS�1�j g��G�V; fS

�2�
j g�iB de-

fined by

 

1

Bmax � B�

Z Bmax

B�
�G�V; fS�1�j g; B��G�V; fS

�2�
j g; B�dB:

The decorrelation field B� corresponds to two flux quanta
through the sample, and for the variance of the conduc-
tance, relatively weak field amplitude Bmax=B� are neces-
sary for a correct sampling [20]. Note that with a magnetic
field, Cooperons are dephased, and Eq. (5) simplifies to its
first line. A crucial step for spins glasses, is to be able to
find a magnetic field Bmax at low enough temperature such
that conductance fluctuations are enough sampled, while at
the same time the magnetic response of the spins can be

neglected. In the experimental work of Ref. [13], the
authors carefully checked that this condition was fulfilled.
On the theoretical side, we are not aware of any study of
these effects in the limit of weak magnetic field [see,
however, [26] for a study at fields large and comparable
to TSG=�g�B� and at the mean-field level].

Having access to overlaps of the spin configurations
opens new perspectives in probing the metallic spin glasses
that we illustrate here by discussing three possible experi-
mental protocols. (a) the distribution of overlaps between
spin configurations corresponding to different quench in
the same sample can be obtained from the previous ideas,
as described in Fig. 1. In the limit of long times tw, this
distribution provides information on the phase space struc-
ture of the spin glass. Obtaining this quantity for the first
time in an experimental spin glass would be of major
importance as current theoretical proposals differ on its
expected behavior. (b) Direct access to spin overlaps at
different times allows for an unprecedented analysis of the
aging of experimental spin glasses [9]. In a canonical
experimental scheme, the sample is cooled down below
TSG under a small magnetic field. This field is kept constant
for a time tw and then switched off. Magnetic field sweeps
provide h�G�tw��G�tw � t�iB and thus the overlap
Q�tw; tw � t�. By repeated cool down, both the average
and crucially the statistics of this quantity can be deter-
mined. (c) a procedure similar to (a) allows to probe the

FIG. 1. Proposed experimental protocol: the temperature is
cycled between Texp and T0 > Tg in successive runs labeled by
n. Measurements of the magneto-conductance are done at Texp

after some equilibration time tw. Different runs n and m corre-
spond to different spins states f ~S�n�i g and f ~S�m�i g at the same
temperature Texp. The average correlations h�Gn�GmiB between
the corresponding magnetoconductance provides a determina-
tion of the overlap Qnm between the two spin configurations.
Repeating this process gives access to the (nonaverage) overlap
distribution for the waiting time tw.
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temperature chaos of the spin glass [12], and its relation
with the rejuvenation (T0 < Texp) and memory (T0 > Texp)
phenomena [27]. The sample is kept at Texp for a time tw
before applying a small field sweep. The temperature is
then switched to T0 � T 
 �T which now remains below
TSG. Successive magnetic sweep at times tn � tw � n� are
then applied at T0. Conductance correlations provides the
overlapQ�Texp; tw;T0; tn� which characterizes the tempera-
ture chaos of the spin glass, and determine, in particular,
the dependence of the overlap length Lc on both tempera-
ture variation �T and time tn. The behavior of Lc in
relation with predictions from the droplet theory are cur-
rently theoretically investigated (see, e.g., [10,27]). The
goal is a characterization of low energy excitations of a
spin glass state, and their slow evolution.

Let us end by commenting on the dimensionality of a
mesoscopic spin glass. To remain in the coherent transport
regime, sample size L has to be of the order of (or lower
than) the inelastic coherence length L� [28] Often quan-
tum diffusion takes place in an effective space of dimen-
sion D � 1. On the other hand, the dimensionality of the
spin glass is determined by the dynamical correlation
length. Values of the correlation length 	SG � NSGn

1=3
imp

(nimp the density of spins) extracted from field change
experiments for various spin glasses [29] and extrapolation
from recent numerical simulations [30] are of the order of
NSG � 30–50 spins after a waiting time tw � 1000 s. For
samples with transverse dimensions Ly, Lz larger than 	SG,
the proposed conductance measurements will probe prop-
erties of an effective 3D spin glass. Reconsidering the
experiments of [13], we obtain approximately �40 spins
in the transverse dimensions Ly ’ 900 �A, implying a 3D
spin glass behavior. Moreover, this opens the perspective
of studying a possible 3D to 1D crossover for the spin glass
dynamics, and possibly determining the associated dy-
namical correlation length.

To conclude, we have shown how new experimental
protocols to determine mesoscopic conductance fluctua-
tions in spin glasses can provide access to the spin con-
figurations overlaps. We believe that these protocols can
open completely new ways of characterizing the spin glass
physics, thus allowing progress in their understanding.
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