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We present the first detailed numerical study in three dimensions of a first-order phase transition that
remains first order in the presence of quenched disorder (specifically, the ferromagnetic-paramagnetic
transition of the site-diluted four states Potts model). A tricritical point, which lies surprisingly near the
pure-system limit and is studied by means of finite-size scaling, separates the first-order and second-order
parts of the critical line. This investigation has been made possible by a new definition of the disorder
average that avoids the diverging-variance probability distributions that plague the standard approach.
Entropy, rather than free energy, is the basic object in this approach that exploits a recently introduced
microcanonical Monte Carlo method.
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The combination of phase coexistence and chemical
disorder plays a major role, for instance, in colossal mag-
netoresistance oxides [1]. In these situations one faces a
fairly general question: which are the effects of quenched
disorder [2] on systems that undergo a first-order phase
transition in the ideal limit of a pure sample? For D � 3
systems, D being the space dimension, we only know that
disorder somehow smooths the transition. More is known
in D � 2, where the effects of disorder are so strong that
the slightest concentration of impurities switches the tran-
sition from first order to second order [3–5].

A useful physical picture in D � 3 is provided by the
Cardy-Jacobsen conjecture [4]. Consider a ferromagnetic
system undergoing a first-order phase transition for a pure
sample. Let T be the temperature while p is the concen-
tration of magnetic sites. A transition line, Tc�p� separates
the ferromagnetic and the paramagnetic phases in the
�T; p� plane. In D � 3 a critical concentration is expected
to exist, 1>pt > 0, such that the phase transition is of the
first order for p > pt and of the second order for p < pt (at
pt one has a tricritical point). When p approaches pt from
above, the latent heat and the surface tension vanish while
the correlation length ��Tc�p�� diverges. The universality
class is expected to be related with that of the random field
Ising model (RFIM). However, the Cardy-Jacobsen con-
jecture relies on a mapping between two still unsolved
models (in D � 3), the (large Q) disordered Potts model
[6], and the RFIM.

Numerical simulation is an important tool for theoretical
investigations in D � 3. In this way, large portions of the
transition line Tc�p� were found to be second order [7–9].
However, the study of the tricritical point as well as that of
the first-order part of the transition line seemed hopeless.
The problem comes from the long-tailed probability dis-
tribution functions (PDF) encountered at Tc�p�, when
comparing the specific heat or the magnetic susceptibility
of different samples [8]. Long-tailed PDFs follow from the

standard definition of the quenched free energy at tempera-
ture T as the average of the samples’ free energy at the
same T [2], which is dominated by rare events [10].
Furthermore, the simulation of a sample of linear size L
with previous methods is intrinsically hard even for a pure
system (see [13]). In fact, previous work [7,8] was limited
to L � 25.

Here, we study for the first time the tricritical point
separating the first- and the second-order pieces of the
transition line. Furthermore, we characterize a first-order
transition that remains so in the presence of quenched
disorder. This has been made possible by two alternative
methods of performing the sample average that avoid long-
tailed PDFs, reproduce the correct thermodynamic limit,
and provide complementary information. Essential for this
study has been the capability of studying directly the
entropy, using a recently proposed microcanonical
Monte Carlo method [14] combined with a cluster algo-
rithm [15]. We studied systems of size up to L � 128,
which allowed a neat finite-size scaling investigation of
the elusive tricritical point.

Specifically, we consider the site-diluted Q � 4 Potts
model with periodic boundary conditions. The spins �i �
1; . . . ; Q occupy the nodes of a cubic lattice with probabil-
ity p. We consider nearest neighbor interaction:

 H spin � �
X

hi;ji

�i�j��i�j : (1)

The �i are quenched occupation variables (�i � 0 or 1 with
probability 1� p and p, respectively) [16]. The pure
system, p � 1, undergoes a first-order phase transition
[8,14], which is generally regarded as very strong.

We introduce a real-valued conjugated momentum per
occupied site, �i [14]. The total Hamiltonian is H �
H spin �

P
i�i�

2
i =2 (the internal energy density will be

e �H =N [18]). In the canonical ensemble, heiT �
1=�2T� � hH spin=NiT . We consider instead the microca-
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nonical ensemble for the extended model f�i; �ig at fixed
e, and integrate out the f�ig to obtain a fluctuation-
dissipation formalism. The basic quantity is a function of
e and the spins, �̂ � �N � 2�=�Ne�H spin�. Its micro-
canonical mean value �f�g�e� � h�̂ie is the e derivative of
the entropy per spin, s�e�, for that particular sample f�g.

Connection with the canonical formalism is made by
solving the equation �f�g�e� � 1=T � 0 that yields the
internal energy as a function of temperature. Thermody-
namic stability requires �f�g�e� to be a decreasing function
of e. Yet, at phase coexistence and for finiteN, it is not (see
Fig. 1 and Ref. [14]): the equation �f�g�e� � 1=T � 0 has
several roots. For T � Tc, we name, respectively, ed and eo
the rightmost and leftmost solutions, which correspond to
the energy densities of the coexisting disordered and or-
dered phases. The critical temperature is fixed by Maxwell
construction: the e integral of �f�g�e� � 1=Tc from ed to eo
vanishes [19]. The surface tension � is LD�1=2 times the
integral of the positive part of �f�g�e� � 1=Tc for eo < e <
ed.

For a disordered system, one analyzes the set of func-
tions �f�g�e� corresponding to a large enough number of
samples. There are two natural possibilities. On one hand,
one can use the Maxwell construction for each sample,
extracting Tc, ed, eo, and � and considering afterwards
their sample average or even their PDF, Fig. 2. The second
alternative is to compute the sample average ��e� �
�f�g�e�, and then perform on it the Maxwell construction
[i.e., take the sample average of s�e�, rather than the
average of the free energy at fixed T].

We have empirically found that the two sample averages
are equivalent in the first-order piece of the critical line.
This is hardly surprising, because the internal energy as a
function of T is a self-averaging quantity for all tempera-
tures but the critical one. Therefore, also ed, eo, and Tc are

self-averaging properties in the first-order piece of the
critical line. The first method offers more information,
but it is computationally more demanding (it requires
high accuracy for each sample). The method featuring
��e� can be used as well in the second-order part of the
critical line; nevertheless, its merit in that region is yet to
be researched.

We have investigated the phase transition for several p
values in the range 0:75 � p � 1. As a rule, we found that
at fixed p the latent heat is a monotonically decreasing
function of L; see Fig. 3. For each p value, we simulated
L � 16, 32, 64, and 128 (for a given p, we did not consider
larger lattices once the latent heat vanished). For all pairs
�L; p�we simulated 128 samples. Besides, some intermedi-
ate L values were added for the finite-size scaling study
below (see Fig. 4), and we have raised to 512 the number of
samples for (L � 16, 32, p � 0:86, 0.875).

We used a Swendsen-Wang (SW) version of the micro-
canonical cluster method [14]. For disordered systems, SW
updates properly loosely connected regions [20] and does
not require painful parameter tunings. For each sample, we
simulated at least 20 e values in the range �1:2< e<
�0:5. The values of e were decreased sequentially to make
use of the thermalization effort at the previous energy
density. The microcanonical cluster method, which is not
rejection-free, depends on a tunable parameter �. In order
to maximize the acceptance of the SW attempt (SWA), �
should be chosen as close as possible to�f�g�e�. After every
e change, we performed cycles consisting of 103

Metropolis steps, � refreshing, then 103 SWA, and a new
� refreshing. The cycling was stopped, and � fixed, when
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FIG. 1 (color online). Sample-averaged e derivative of the
entropy, ��e�, for several lattice sizes, L, and spins concentra-
tions, p. Metastability requires a nondecreasing ��e�. The hori-
zontal line marks the critical (inverse) temperature 1=Tc,
obtained through Maxwell’s construction. At fixed L the surface
tension increases for growing p. Note that, for fixed dilution, a
seemingly first-order transition (L � 64, bottom right), may
actually be of the second order if studied on larger lattices (L �
128, bottom left).

FIG. 2 (color online). Histograms for the sample-dependent
latent-heat �f�ge � ed � eo (left) and surface-tension (right). In
the top panels we show results in the largest lattice, where two
very close spin concentrations behave very differently. The three
types of drawn horizontal lines (indicating central value and
statistical error) correspond, from top to bottom, to the median,
the mean, and the value obtained from ��e�. In the lower panels
we show the histograms for p � 0:98 and several L (mind the
difference in the horizontal scales with the upper part). The
latent heat is self-averaging while the surface tension is not.
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the SWA acceptance exceeded 60%. Afterwards we per-
formed �2–4� � 105 SWA, taking measurements every 2
SWA. In addition, we performed thermalization checks
that included comparisons of hot and cold starts or even
mixed configurations (bands [14]).

Our results for the latent heat, �e � ed � eo, and the
surface tension are in Fig. 3. The apparent location of the
tricritical point (i.e., the p where both �e and � vanish)
shifts to upper p for growing L rather fast. For lattice sizes
comparable with those of previous work, L � 16, we
obtain pL�16

t � 0:75, at a sizable distance from p � 1,
but the estimate of pt increases very fast with L.

The PDFs for �e and �, Fig. 2, display an interesting L
evolution. When the ��e� changes behavior from nonmo-

notonic (L � 64, Fig. 1, bottom right) to monotonic (L �
128, Fig. 1, bottom left), the two PDFs becomes enor-
mously wide [21]; see top panels in Fig. 2. This arises
because for many L � 128 samples, the curve �f�g�e� is
becoming flat, or even monotonically decreasing (i.e.,
�e � � � 0), while no such behavior was seen for L �
64. Only for p � 0:98, the width of the PDFs for �e scales
as L�D=2, as expected for a self-averaging quantity (Fig. 2,
bottom left). The surface tension is not self-averaging
(Fig. 2, bottom right).

From Figs. 1–3 one cannot rule out that pt � 1: a
disordered first-order transition would not exist. For-
tunately, we can solve this dilemma by considering the
correlation length, obtained from the sample-averaged
correlation function,

 C�r� � L�D
X

x

�x�x�rh��x;�x�r �Q
�1ie; (2)

as �2�e� � 	�1� Ĉ�0; 0; 0�=Ĉ�2�=L; 0; 0�
=	2 sin�=L
,
where Ĉ is the Fourier transform of C�r� [22,23].

We take the correlation length in units of the lattice size
at ed, eo as obtained from ��e� (a jackknife method [23]
takes care of the statistical correlations). For all p < pt,
one expects that both ��ed�=L and ��eo�=L tend to non-
vanishing and different limits for large L [24]. On the other
hand, for p > pt, ��ed�=L is of order 1=L, while
��eo�=L� L

D=2. For a fixed L, upon increasing p, the
behavior goes from second-order-like to first order (see
Fig. 1). Hence, a finite-size scaling approach [23] is
needed.

Consider the curves of ��ed�=L versus p, for different L,
Fig. 4 (top left). There is a unique concentration, pL;2L,
where the correlation length in units of the lattice size
coincides for lattices L and 2L. One has [25]

 pL;2L � pt � AdL
�x: (3)

An analogous result holds for ��eo�=L. Since Ad and Ao are
rather different (see Fig. 4, right), a joint fit of all data
yields an accurate estimate for the location of the tricritical
point:

 pt � 0:954�3�; x � 1:23�9�;
�2

dof
�

4:23

3
; (4)

Of course, due to higher-order scaling corrections, Eq. (3)
should be used only for lattices larger than some Lmin [26].
The fit �2 was acceptable taking Lmin

o � 16 and Lmin
d � 12

(for the sake of clarity we do not display data for L � 12 in
the figures). We thus conclude that p � 0:98 is definitively
in the first-order part of the critical line.

We now look at �=L at pL;2L; see Fig. 4. Consider
��ed�=L [��eo�=L] as a function of �L;p�, in the region
p < pt. The salient features are (i) for fixed L, ��ed�=L is a
decreasing function of p [��eo�=L is increasing], (ii) for
fixed p, ��ed�=L has a minimum [��eo�=L has a maxi-
mum], at a crossover length scale, Lco�p�, that separates

FIG. 4 (color online). Left: Correlation length in units of the
lattice size, at phase coexistence for the paramagnetic (top) and
ordered (bottom) phases, as a function of spin concentration for
several L (lines are cubic spline interpolations for data at fixed
L). Right: Spin concentration where �=L (data from left panel)
coincide for lattices L and 2L versus 1=Lx; see Eqs. (3) and (4).
Lines are a joint fit for x, pt, Ad, and Ao.

FIG. 3 (color online). Top: Latent heat as obtained from ��e�
vs spin concentration for several lattice sizes (lines are linear
interpolations). Data for p � 1 and L � 128 were taken from
Ref. [14]. To illustrate the sample dispersion, we plot as well the
scatterplot of �N=LD;�f�ge� for the 128 samples at L � 16, p �
0:85 and L � 64, p � 0:92. Bottom: as top part, for the surface
tension.
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the first-order-like behavior from the second-order one,
(iii) at the crossing point pL;2L we have L< Lco�p

L;2L�<
2L, and (iv) at least within the range of our simulations,
Lco�p� is a growing function of p. A standard scaling
argument, combined with (i)–(iv), yields that ��ed�=L at
pL;2L is of order 1=Lco [��eo�=L� L

D=2
co ]. If Lco�p� di-

verges at pt, ��ed�=L at pL;2L should tend to zero for large
L, which is indeed consistent with our data.

In this work, we have performed for the first time a
detailed study of a disordered first-order transition in D �
3, by site diluting the Q � 4 Potts model, a system suffer-
ing a prototypically strong first-order transition. A fairly
small degree of dilution smooths the transition to the point
of becoming second order, at a tricritical point, pt. A
delicate finite-size scaling analysis is needed to firmly
conclude that pt < 1. We thus claim that (quenched) dis-
ordered first-order transitions do exist in D � 3, although
quenched disorder is astonishingly effective in smoothing
the transition (we speculate that the percolative mechanism
for colossal magnetoresistance proposed in [1] could be
fairly common inD � 3). We also observe that, for a given
p < pt, a crossover length scale Lco�p� exists such that for
L < Lco�p� the behavior is first-order-like. The asymptotic
second-order behavior appears only for L > Lco�p�. Our
data are consistent with a divergence of Lco�p� at pt. The
successful location of the tricritical point has been made
possible by new definitions of the quenched average that
avoids long-tailed PDF [8]. It was crucial in this approach,
a recently introduced microcanonical Monte Carlo method
that features the entropy density rather than the free energy
[14].

This work has been partially supported by MEC through
Contracts No. FIS2004-01399, No. FIS2006-08533-C03,
No. FIS2007-60977 and by CAM and BSCH. Computer
time was obtained at BIFI, UCM, UEX, and, mainly, in the
Mare Nostrum. The authors thankfully acknowledge the
computer resources and technical expertise provided by the
Barcelona Supercomputing Center.

[1] E. Dagotto, Science 309, 257 (2005); J. Burgy et al., Phys.
Rev. Lett. 87, 277202 (2001); 92, 097202 (2004); C. Sen,
G. Alvarez, and E. Dagotto, Phys. Rev. Lett. 98, 127202
(2007).

[2] See, e.g., G. Parisi, Field Theory, Disorder and
Simulations (World Scientific, Singapore, 1994).

[3] M. Aizenman and J. Wehr, Phys. Rev. Lett. 62, 2503
(1989); K. Hui and A. N. Berker, ibid. 62, 2507 (1989).

[4] J. Cardy and J. L. Jacobsen, Phys. Rev. Lett. 79, 4063
(1997); Nucl. Phys. B515, 701 (1998).

[5] C. Chatelain and B. Berche, Phys. Rev. Lett. 80, 1670
(1998); Phys. Rev. E 58, R6899 (1998); 60, 3853 (1999).

[6] F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982); M. T. Marigold,
J.-Ch. Angles d’Auriac, and F. Igloi, Phys. Rev. E 73,

026126 (2006).
[7] C. Chatelain, B. Berche, W. Janke, and P.-E. Berche, Phys.

Rev. E 64, 036120 (2001).
[8] C. Chatelain, B. Berche, W. Janke, and P.-E. Berche, Nucl.

Phys. B719, 275 (2005).
[9] H. G. Ballesteros, L. A. Fernández, V. Martin-Mayor, A.
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