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All the available data for the dispersion and linewidth of the single-particle spectra above the
superconducting gap and the pseudogap in metallic cuprates for any doping have universal features.
The linewidth is linear in energy below a scale !c and constant above. The cusp in the linewidth at !c
mandates, due to causality, a waterfall, i.e., a vertical feature in the dispersion. These features are
predicted by a recent microscopic theory. We find that all data can be quantitatively fitted by the theory
with a coupling constant �0 and an upper cutoff at !c, which vary by less than 50% among the different
cuprates and for varying dopings. The microscopic theory also gives these values to within factors ofO�2�.
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Introduction.—With increased refinement of technique
and imaginative use, angle-resolved photoemission spec-
troscopy (ARPES) on the high temperature superconduc-
tors has revealed that novel physical principles determine
the single-particle spectra in such compounds [1,2].
Recently, the single-particle spectra over an energy range
from the chemical potential to about 1 eV have been
deduced for various metallic dopings in different cuprates
[3–10]. Also, recently a microscopic theory [11] has been
formulated that derives the fluctuations leading to the
phenomenological marginal Fermi liquid (MFL) [12] and
their coupling to fermions. MFL had previously been
tested only for low energies and near optimal doping in
Bi2212 [13–15] with adjustable couplings. Here we test
crucial new features of the microscopic theory including its
universality, its cutoff, and its coupling functions, by com-
paring with recent ARPES data in 4 different cuprate
families and at different dopings.

The most important results of these recent ARPES ex-
periments may be summarized as follows: (i) The spectra
for energies ! in the range of interest (above the super-
conducting gap and the pseudogap energy scales) are
universal; they have the same functional form for all
cuprates and for all metallic dopings. Moreover, even the
parameters in the functional form vary less than by a factor
of 2 over the entire range of cuprates for which data are
available, irrespective of whether they are underdoped
(UD), optimally doped (OP), or overdoped (OD). (ii) The
momentum distribution curves (MDC) at constant energy
! is a Lorentzian with width wk�!�. In the energy range of
interest wk varies linearly with ! up to a cutoff above
which it is approximately a constant. This is modified if the
bare velocity v�k� varies within wk, which happens as the
bottom of the band is approached. See Fig. 3 below for
representative experimental data. (iii) The peak of the
MDC as a function of ! moves with k defining the
renormalized dispersion "�k�. The observed dispersion
"�k� follows the band structure �k with a smooth renor-
malization factor up to ! � E1. Above E1, the ‘‘velocity’’
d"�k�=dk sharply increases up to another cutoff E2 where

"�k� resumes the normal dispersion. The nearly vertical
dispersion has been picturesquely termed a ‘‘waterfall’’
[3]. In the energy range, E1 & ! & E2, there is also an
indication of multiple "�k� for fixed ! [6,8]. E1 varies
systematically, being largest in the ��;�� direction and
smallest in the ��; 0� direction [8]. Similarly, the position
of the waterfall in k space varies systematically.

All these features follow quantitatively from the
quantum-critical fluctuations derived recently [11]. We
find that, given the bare band structure �k, all available
data can be fitted with the two parameters of this theory, a
sharp cutoff !c, and a coupling constant �0 calculable to
factors of O�2�.

Single-particle spectral function.—The single-particle
spectral function deduced by ARPES is given as

 A�k; !� �
�Im��!;k�=�

�!� Re��!;k� � �k�
2 � �Im��!;k��2

;

(1)

where ��!;k� is the self-energy function. The band struc-
ture �k is in general fitted by the tight-binding dispersion
[16].

Microscopic theory.—A microscopic theory for the cup-
rates [11,17,18] is based on the realization that the central
organizing feature in the physics of the metallic phase of
the cuprates are quantum-critical fluctuations of loop cur-
rents. In this theory the ordering of these loop currents
below Tg (PG in inset of Fig. 1) leads to a phase that breaks
time-reversal symmetry but preserves translational sym-
metry. Direct evidence for such an ordered state has been
obtained by polarized neutron scattering in YBa2Cu3O6�x
[19] and by dichroic ARPES experiments in
Bi2Sr2CaCu2O8�x [20], for various x in the pseudogap
phase. The properties in the entire funnel shaped region
(I) in the inset of Fig. 1 are determined by the quantum-
critical fluctuations of the loop currents. Therefore univer-
sal properties are predicted for ! larger than the super-
conducting gap or the pseudogap for all x in the metallic
phases on either side of xc.
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The microscopic theory of the quantum-critical fluctua-
tions [11] gives their absorptive part to be

 

Im��q; �� � ��0 tanh �
2T ; j�j<!c;

0; j�j>!c:
(2)

!c is a cutoff and �0 gives the integrated weight of the
fluctuations. In the microscopic theory [11], !2

c � 2EVR2,
where E is the local repulsion or charging energy parame-
ter, V is the nearest neighbor Cu-O interaction, and R is the
dimensionless loop-current order parameter. �0 � R=!c.
For E ’ 5 eV, V ’ 1–2 eV, and R ’ 0:1, which is consis-
tent with the neutron measurements, we expect !c �
0:3–0:5 eV.

Calculation of the self-energy.—The loop-current fluc-
tuations scatter fermions from k to k0 with the amplitude
��k;k0�. From the microscopic model, we find [21]

 ��k;k0� � 	i
V
2
�sx�k� k0�sy�k� k0� � x$ y�Sxy�k; k0�;

(3)

where sx;y�k� 
 sin�kx;ya=2�, sxy�k� 

���������������������������
s2
x�k� � s2

y�k�
q

,

Sxy�k; k0� 
 �s�1
xy �k� � s�1

xy �k0��. The leading self-energy
contribution is
 

��i!n;k� � T
X

q;i�n

j��k;k� q�j2

�G�i!n � i�n;k� q���q; i�n�; (4)

where !n, �n are Matsubara frequencies of the quasipar-
ticle and the fluctuating mode, respectively. Given a
q-independent � and ��k;k0� of the form of Eq. (3), the
self-energy variation with k on a Fermi surface comes
only from the separable s-wave part of j��k;k0�j2,
which is /�1� coskxa coskya��k! k0�. This gives �k /

�1 � coskxa coskya�, which varies by about a factor of 2
from the ��;�� to the ��; 0� directions for the Fermi
surface of Bi2212 near optimal doping.

At T � 0 the self-energy is easily evaluated to be
 

Im��!;k� ����k�
�
2

(
j!j; j!j<!c

!c; j!j>!c

Re��!;k� ��
��k�

2

�
! ln

!c

j!j

� �!�!c� ln
j!�!cj

!c
��!!�!�

�
; (5)

where ��k� � �0h�2ik0 , �0 � N�0��V2=4��0, and h�2ik0 is
the average of j��k;k0�j2 over k0 on the Fermi surface. For
the density of states per one spin species N�0� � 1�eV��1

and other parameters used above, we expect �0 � 1.
Given such a weakly momentum dependent self-energy,

the vertex corrections [22] to the self-energy are only of
O��!c=W�, where W is the bare bandwidth of the con-
duction band. Using the!c and � fitted to the experiments,
this ratio is of O�0:1�. The remaining processes, repeated
scattering (self-consistent Born approximation) produce no
singular corrections. At low energies compared to !c,
Eq. (5) reduces to the MFL form deduced earlier [12],
except for the weak momentum dependence.

Given the sharp change of the slope in the imaginary part
near !c, the real part has a logarithmic divergence in its
slope at !c before changing from its low energy form /
! logj!j to 1=! for !� !c. This sharp variation of
Re��!� near !c is responsible for the observed waterfall
feature as we now proceed to show.

The waterfall.—The dispersion of the quasiparticles,
"�k� given by

 "�k� � Re��"�k��� �k � 0: (6)

As shown in Fig. 1, !� Re��!� has a wide reentrant
region from !1  !  !2. The solution of Eq. (6) there-
fore produces a waterfall in the dispersion "�k� because it
varies over the large energy range!1 to!2 for a very small
variation in k. The multiple solutions obtained in this
region are within Im��!� for � of O�1�. Above ! ’ !2,
the dispersion becomes just a renormalized band structure.
The calculated waterfall is shown in Fig. 2. The spectral
intensity maps in Figs. 2(d)–2(f) should be compared with
Figs. 1(a)–1(c) of Ref. [8].

Comparison with experiments.—The calculated self-
energy at �0 � 1 (suitable to fit the experimental data [8]
for La1:83Sr0:17CuO4) is shown in Fig. 1. The experimental
MDC width for this compound and the calculated widths
for three different cuts are compared with experiment in
Fig. 3. In Figs. 4(a)–4(c), we compare the experiments [3]
for the dispersion of three Bi2212 samples at different
dopings with calculations with !c � 0:5, �0 � 1. In
Fig. 4(d), we compare the measured linewidth for an
UD-LSCO sample, an OP-Bi2201 sample and an OP-
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FIG. 1 (color online). The self-energy and !� Re��!� as
functions of ! for �0 � 1. All quantities are dimensionless in
units of !c. The observable dispersion "�k� for a given bare �k,
solved by Eq. (6) is equivalent to the intersection of !�
Re��!� with a horizontal line at �k. As !� Re��!� has a
wide reentrant region for!1  !  !2, the observed dispersion
falls from!1 to !2 for a very small variation in �k producing the
waterfall. Inset shows the phase-diagram of the cuprates.
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Bi2212 sample with calculations with parameters given in
the figure caption.

Universality of the data.—The data and the comparison
with experiments in Fig. 3 and 4(a)–4(d) attest to the
universality of the single-particle spectra of the cuprates
and of the quantitative success of the theory. Now we
consider in detail each of the points (i) to (iii) of the
experimental data and explain them successively.

(i) The physical properties in any quantum-critical re-
gime are universal, controlled by the scale-invariant criti-
cal fluctuations. Specifically, for ! larger than the super-
conducting gap or the pseudogap the self-energy is of MFL
form and is given in terms of only the two parameters !c,
�0 for each compound for all x. Weak dependencies in
these parameters from variation in microscopic parameters
due to varying x or T may occur, of course. We find,
however, that for a given compound, a single value of these
parameters is adequate to fit all the available data for
different x and for all momentum directions.

It is worth noting that the spectra for energies below the
pseudogap energy and T  Tg is also scale invariant with a
new scale / Tg�x� [23,24].

(ii) Suppose at certain energy !, Eq. (6) is satisfied for
k � k0. Since the self-energy does not depend signifi-
cantly on k, we can expand the spectral function in �k�
k0�. The MDC is then a Lorentzian with widthwk given by
Im��!�=v�k0� where v�k0��vy�k0��vx�k0��kx�kx0�=
�ky�ky0�, is the bare velocity in the momentum-cut direc-
tion. This expansion also requires that within �k� k0� �
wk, the velocity vk is nearly a constant.

As discussed above, Im��!� increases linearly in ! for
! & !c and is constant beyond. Therefore if v0�k� varies
slowly with k as in cut 2 in Fig. 2, MDC linewidths also
vary linearly in !, i.e., wk / !. Away from the nodal
momentum directions, v0�k� varies considerably as in
cut 4 and higher of Fig. 2. As a result, MDCs’ linewidth
deviates from the linear-! dependence. This accounts for
the MDC width of cut 5 shown as an example in Fig. 3 and
the higher cuts. If the MDC linewidth is multiplied by the
bare velocity at each k in any direction, a linear depen-
dence of the width with! is obtained both in theory and in
the experiments.

(iii) Comparing Figs. 2(d)–2(f), we can see that there
are two distinct reasons for the waterfalls. If �k reaches
!1 � Re��!1� at k � k0 as k is varied along the momen-
tum cut, e.g., cut 2 in Fig. 2, "�k� follows the waterfall
between !1 and !2, which correspond to E1 and E2

defined in experiments.
If the momentum cuts are sufficiently away from the

nodal cut such that the bottom of the band is very shallow,
�k never reaches !1 � Re��!1�, e.g., cuts 5–8 in Fig. 2.
The observed dispersion "�k� then follows Eq. (6) to its
maximum value at the bottom of the band km. For higher
energies, there are no solutions to Eq. (6). In this case the
MDC curves stay centered at km, which leads to another
type of waterfall. E1 in this case is nearly the energy of the
bottom of the renormalized band, and gets continuously
smaller as the bottom of the band (where the velocity is
zero) becomes continuously more shallow from the ��;��
to the ��; 0� direction. The variation of the position of the
waterfalls, Fig. 3 of Ref. [8] and Fig. 3 of Ref. [6] is thereby
explained. In addition, the linewidth is no longer given by
Im�=v0, leading to an additional cusp in linewidth at E1

(e.g., cut 5 in Fig. 3).

FIG. 2 (color online). (a),(b),(c) Calculated MDCs for three of
the momentum cuts 2, 4, and 7 shown in the inset of (a) for
which data are available from Ref. [8]. The MDCs are shown at
various energies ! labeled in the figures. (d),(e),(f) Spectral
intensity maps for the same cuts correspondingly. From the
intensity maps, we can identify the dispersion "�k� marked by
circles; the bare dispersion �k are shown in dashed lines. The
inset of (a) shows the Fermi surface and eight momentum cuts
done in experiments [8]. It also shows the positions where the
waterfall are expected in k space for radial cuts with the addi-
tional contour drawn inside the Fermi surface.

FIG. 3 (color online). The MDC half-width at half-maximum
wk�!� is shown for cuts 2, 3 and 5 of the inset of Fig. 2(a). The
experimental data for the same cuts from Fig. 2 of Ref. [8] are
also shown. Note that the experiments quoted are done with an
energy resolution of 30 meV, which accounts for the deviation
from the theory at low energies. Higher resolution data [15]
confined to lower energies is consistent with the theory.
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However, if radial cuts are taken to avoid the shallow
band, the position of the waterfall in momentum space is
always the locus of k where "�k� � !1. This locus is
shown in Fig. 2(a) for radial cuts and is to be compared
with data in Fig. 4 of Ref. [8] and Fig. 4 of Ref. [6].

Concluding remarks.—The experimental results dis-
cussed place strong constraints on a theory applicable to
the cuprates. Specifically, the experiments give a scattering
rate linear in ! up to a sharp cutoff at !c and constant
above with a coefficient that is a weak function of k. This
behavior is found in the entire ‘‘strange metal’’ region of
the phase diagram. We do not know any ideas proposed for
cuprates besides those discussed here that give these
properties.

In this Letter, we have pointed out the universal aspects
of the measured single-particle self-energy in cuprates and
shown that its functional form and even its magnitude is
consistent with the recent microscopic theory of quantum-
critical fluctuations [11]. These fluctuations are predicated
on the existence of an unusual symmetry breaking in

underdoped cuprates for which considerable experimental
evidence has also been adduced.
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FIG. 4 (color online). Comparison between experimental and
theory results (represented by symbols and lines, respectively)
for various cuprate samples. (a)–(c) Calculated dispersions for
three Pb-doped Bi2212 samples along the nodal cuts: UD with
Tc � 64 K, OP with Tc � 91 K, and OD with Tc � 65 K. The
experimental data shown are extracted from Fig. 1 of Ref. [3].
The tight-binding fitting parameters of the band structure are
taken from Ref. [25]. All these samples are fitted by the pa-
rameters !c � 0:5 eV (for all) and �0 � 0:98, 1.01, and 1.05,
respectively. (d) The MDC linewidths (full width at half-
maximum) for different cuprate samples. �, �, �, and �
represent OP-Bi2201 (nodal cut, Ref. [9]), OP-Bi2212 (nodal
cut, Ref. [26]), LSCO 0.17 (cut 2 in Fig. 2 of Ref. [8]), and LSCO
0.145 (cut 1 in Fig. 3 of Ref. [27]), respectively. The correspond-
ing theory fitting parameters are �0 � 0:99, !c � 0:5 eV; �0 �
1:01, !c � 0:5 eV; �0 � 1:09, !c � 0:41 eV; and �0 � 1:64,
!c � 0:41 eV.
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