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We investigate the nonlinear evolution of the backward stimulated Raman scattering (BSRS) in the
regime where the nonlinear saturation mechanism is the Langmuir decay instability resulting from the
coupling of the BSRS-generated Langmuir wave with the ion acoustic waves. We present numerical
results obtained with a fluid-type code in one- and two-dimensional spatial dimensions, in the case of an
inhomogeneous plasma. The plasma density is under quarter-critical and depends linearly on the
longitudinal spatial coordinate, in the regime where the Rosenbluth gain factor for the amplitude, denoted
as GRos, is in the range �=2 � GRos � 6. We observe that the Langmuir decay instability is able to
suppress the gradient stabilization and restore the absolute nature of BSRS, thus leading to a significantly
increased BSRS reflectivity.
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The stimulated Raman scattering is a well-known scat-
tering process that may occur when a transverse electro-
magnetic wave interacts with a nonlinear dielectric. This
scattering process plays a very important role in the case of
a laser wave propagating in a plasma. The backward
stimulated Raman scattering (BSRS) corresponds to the
parametric instability by which an incident laser wave
couples to a Langmuir wave to give rise to a backscattered
electromagnetic wave. In the scheme of laser fusion, BSRS
may lead to a net energy loss of the incident laser beams
and to the generation of fast electrons able to preheat the
fusion fuel. For these reasons, BSRS may be detrimental
for the fusion gain, and many fundamental studies have
been carried out experimentally, aimed at checking the
theoretical predictions concerning the evolution of this
instability.

In the laser fusion plasmas, the plasma density is spa-
tially inhomogeneous, so that this situation enters into a
generic case where the matching conditions for three wave
resonance can only be satisfied locally. Such a generic case
has been investigated by Rosenbluth in his 1972 seminal
work [1]. He established the surprising result that in an
infinitely long plasma, a parametric instability resulting
from a resonant three wave coupling is stabilized by the
plasma inhomogeneity, however small it might be, as long
as it gives rise to a wave number mismatch that varies
linearly with the propagation coordinate. Quite gener-
ally [2], in the inhomogeneous cases characterized by a
resonance mismatch that is a monotonic function of the
propagation coordinate, and for densities below quarter-
critical, Rosenbluth’s analysis predicts that the decay
waves amplitudes ja�j2 grow spatially, starting from
the thermal level ja�j2th and reaching the level ja�j2 �
ja�j

2
th exp2GRos, where GRos denotes the so-called

Rosenbluth gain factor for the amplitude. For this reason,
the potential development of BSRS is usually considered to
be controlled by the value of the Rosenbluth gain factor,
and BSRS is expected to be negligible forGRos � 6. On the

other hand, the Rosenbluth result is also known to be
nonrobust [3,4]: in particular, the absolute nature of
BSRS could be restored when either (i) fast spatial varia-
tions of one of the plasma parameters, or (ii) small sinu-
soidal modulations, or (iii) low frequency fluctuations are
superimposed to a linear density profile. This result holds
in the regimes where the parametric coupling would give
rise to an absolute instability if the plasma were homoge-
nous. An absolute instability corresponds to an infinite
temporal growth of the decay waves within the linear
stability analysis framework. In this case, the parametric
instability develops to a level determined by the nonlinear
saturation mechanisms, and this level can be significantly
higher than the spatial amplification prediction ja�j2 �
ja�j2th exp2GRos.

In this Letter, we demonstrate that the BSRS nonlinear
saturation mechanism is itself capable of generating low
frequency fluctuations which are able to restore the abso-
lute nature of BSRS. Thus, BSRS may behave as a non-
linear absolute instability, as already shown by Rose in
Ref. [5] in the context where it is the Langmuir wave
turbulence which nonlinearly self-sustains the stimulated
Raman scattering. More precisely, we find that there exists
a threshold GT for the Rosenbluth gain factor, such that for
GRos <GT the decay waves amplitudes remain controlled
by the Rosenbluth gain factor according to the above
expression ja�j2 � ja�j2th exp2GRos; on the other hand,
for GRos >GT the decay waves amplitudes are large
enough to make it possible for the nonlinear effects to
give rise to low frequency fluctuations able to restore the
absolute nature of BSRS, so that the decay waves ampli-
tudes are then well above this expression.

Specifically, we consider the BSRS nonlinear evolution
in an inhomogeneous plasma, in the regimes for which the
nonlinear BSRS saturation results from the coupling of the
Langmuir waves (LW) with the ion acoustic waves (IAW).
We restrict ourselves to the regime kL�De � 0:25 for which
the saturation mechanism is the Langmuir decay instability
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(LDI) cascade. Here kL denotes the characteristic wave
number of the BSRS-generated Langmuir wave, and �De is
the electron Debye length. LDI is the process by which the
LW generated by BSRS couples to an IAW and gives rise to
a counterpropagating LW. This process can repeat itself,
leading to the so-called LDI cascade. The BSRS nonlinear
saturation then results from the transfer of the LW energy
in a spectral domain which is off resonance with BSRS [6].
The condition kL�De � 0:25 makes it possible to ignore
nonlinear wave-particle interaction and consequently to
use a fluid-type description in which the Langmuir wave
damping is modeled by the usual Landau damping operator
[7,8].

In our fluid-type model, the coupling of the Langmuir
waves to the ion acoustic waves is described by the
Zakharov equations [7,9] in which the plasma inhomo-
geneity is kept into account. The electromagnetic waves
amplitudes ~E� are decomposed into their fast and slow
variations in space and time as ~E� � E� exp�i�!ref

� t�

kref
� x� � c:c:, where E� are the slowly varying envelope

amplitudes. The subscript � refers to the incident laser
wave for � � 0 and to the backscattered wave for
� � R. The frequency !ref

� and wave number kref
� satisfy

the transverse wave dispersion relation corresponding
to an electron density called ‘‘reference,’’ denoted as
nref

0 , and arbitrarily chosen to be the density at the center
of the plasma. They also satisfy the frequency matching
condition !ref

0 � !ref
R �!

ref
pe , where !ref

pe denotes the
electron plasma frequency calculated for the reference
density nref

0 . The Langmuir waves amplitude ~EL is simi-
larly decomposed into its fast and slow variation in time
as ~EL � EL exp�i!ref

pe t� c:c:, where EL is the slowly
varying envelope amplitude. No envelope approximation
is made for the IAW evolution. The plasma inhomogeneity
is modeled by the equilibrium density n0, which is a linear
function of the propagation coordinate. The coupled mode
equations describing BSRS coupled with LDI are the
following:
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where nbfe � n0 � ns denotes the total low frequency den-
sity, n0 being the background electron density and ns the
density perturbation associated to the IAW. The sym-
bols D� with � � 0; R denote the paraxial propagators
for the transverse waves, D� � �@t � �� � �g;�@x �
i�c2

�=2!ref
� �r

2
?	, where �g;� is the group velocity of wave

� at the reference density, and �� is its damping co-
efficient. DL denotes the propagator for the Langmuir
waves: DL � �@t � �L � i�3�2

the=2!ref
pe �r

2	, where �the �
�Te=me	

1=2 is the electronic thermal velocity, �L is the
Langmuir wave damping defined in Fourier space, Te
is the electron temperature, me is the electron mass. The
IAW propagator is given by Ds � �@

2
t � 2�s@t � c

2
sr

2�,
where cs � ��ZTe � 3Ti�=mi	

1=2 is the sound velocity, �s
is the IAW damping defined in Fourier space, Ti is the
ion temperature, mi is the ion mass. The mode cou-
pling terms are CL;R / fwin�r 
 EL�ER exp��ikref

L x�,
CL;0 / fwin�r 
 E�L�E0 exp�ikref

L x�, and C0;R /
fwinr�E0E�R exp�ikref

L x�	 where kref
L � kref

0 � k
ref
R denotes

the wave number of the Langmuir wave at the reference
density. fwin is a window function; its role is to prevent any
unphysical destabilizations of absolute instabilities at the
edge of the density profile.!pe � !ref

pe

���������������
n0=n

ref
0

q
is the local

electron plasma frequency. We added a noise source term
in the equation for EL in order to properly describe the
thermal equilibrium. The values of the quantities �L and �S
are �L � �S � 1; taking �L � 0 makes it possible to arti-
ficially suppress the coupling of the LW to the IAW;

similarly, taking �S � 0 makes it possible to suppress the
transverse waves self-focusing.

We first show the results of 2D simulations in the case of
a monospeckle laser beam generated by the flattop model
[10]. The simulations parameters are the following: the
laser wavelength, denoted as �0 and expressed in �m, is
1.06, the numerical aperture f# of the focusing optics is
f# � 3. The laser beam is focused in the center of the
plasma with the intensity I � 2� 1015 W=cm2; the
plasma longitudinal and transverse sizes are Lk � 127�0

and L? � 16�0, the electron temperature is Te � 1 keV,
the ion temperature is such that ZTe=Ti � 10 with
Zme=mi � 1=1836. The density profile along the propa-
gation axis is a linear ramp varying in the range
�0:08:0:12	nc; the value of the key parameter kL�De is
kref
L �

ref
De � 0:21 at the reference density nref

0 � 0:1nc. The
parameters lead to the following value of the Rosenbluth’s
amplitude gain factor GRos  4:5. The reflectivity is the
ratio of the backscattered wave energy flux over the in-
coming wave energy flux.

It can be observed in Fig. 1 that the time averaged
reflectivity hRi is higher, by the factor 5, in case (b)
when BSRS is coupled to LDI and to self-focusing (�L �
�S � 1) than in case (a), when BSRS is considered on its
own, i.e., without any coupling to the plasma low fre-
quency response (�L � 0 and �S � 0). We checked that
in this case (a), the Raman reflectivity is in excellent
agreement with the theoretical predictions [2] leading to
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the expression hRi � Rth exp�2GRos�, Rth denoting the ther-
mal level computed in Ref. [2]. We then found that the time
averaged Raman reflectivity does not change significantly
as compared with the full physics case (�L � �S � 1) if
self-focusing is ignored (�S � 0), as long as LDI is re-
tained (�L � 1). Finally, we also checked that self-
focusing alone (�S � 1 and �L � 0) does not lead to any
significant increase of the Raman reflectivity when com-
pared with case (a). Thus, we have established the main
result of our Letter: LDI is able to increase the Raman
reflectivity in an inhomogeneous plasma as compared to
the prediction hRi � Rth exp2GRos based on the Rosen-
bluth gain factor value. As said previously, we interpret
this surprising result as being due to the fact that the LDI
cascade gives rise to IAW modulations able to restore the
absolute nature of the BSRS reflectivity (the maximum
IAW amplitudes are observed to be in the order of ns=n0 
10�1).

In order to check this interpretation, we carried out
extensive 1D simulations, solving the same system (1),
with exactly the same parameters as in the 2D simulations.
The corresponding 1D results are displayed in Fig. 2. It can
be seen that the effect observed in 2D takes place similarly
in 1D, namely, the averaged Raman reflectivity is increased
by the factor 6.5 in case (b), when BSRS is coupled to LDI,
as compared with case (a), when the coupling of the
Langmuir wave to the IAW is suppressed.

Figures 3(a) and 3(b), respectively, display the snapshots
of the Langmuir and ion acoustic waves at the instant t �
21 ps (3:5� 104!�1

0 ) corresponding to the reflectivity
peak in Fig. 2(b). On these figures, the following features
can be observed in the spatial domain �550:700	c=!0

where the Langmuir wave was initially maximum: (i) the
Langmuir wave is characterized by large amplitudes mod-
ulations; (ii) the IAW reaches amplitudes ns=n0 in the
order of jns=n0j � 5� 10�2. These two features, together

with their spatial correlation, are characteristic of LDI
development. When looking at the same snapshots at later
times, it can be seen that the spatial domain in which the
two previous characteristic features are observed extends
in space until it fills the whole plasma domain: then, the
Langmuir and the ion acoustic waves both appear to be
spatially incoherent in the entire plasma. Both waves are
characterized by spatially uncorrelated high peaks, and the
incoherence is manifest in the waves spectra. Figure 4
shows the snapshot (a) and the corresponding spatial spec-
trum (b) of the IAW at the time t � 45 ps (7:5� 104!�1

0 );
the IAW amplitude is in the order of jns=n0j � 10�1,
which is similar to the value found in the 2D simulations.
An asymmetry can also be observed in the IAW snapshot
displayed in Fig. 4(a), namely, the well amplitudes are
larger than the peak heights. Such an asymmetry is typical
of the existence of so-called cavitons. The latter are pre-
dicted to result from the nonlinear evolution of the LDI
cascade in the regime of Langmuir wave driven collapse
[7,9]. The characteristic caviton size lcs can be observed to
be of the order of 1=ks, ks denoting the wave number of the
fundamental IAW generated by LDI. For our simulations
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FIG. 1 (color online). 2D case. Reflectivities versus time for
2D simulations carried out in the time interval T � 45 ps (7:5�
104!�1

0 ) in the cases: (a) BSRS without LDI and without self-
focusing (solid black line); the corresponding time averaged
reflectivity is hRi � 0:65� 10�3 (dashed line); (b) BSRS with
LDI and with autofocusing [solid red (gray) line]; the corre-
sponding time averaged reflectivity is hRi � 3:3� 10�3 (dashed
line).
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FIG. 2 (color online). 1D case. Reflectivities versus time for
1D simulations carried out in the time interval T � 51 ps (8:5�
104!�1

0 ) in the cases: (a) BSRS without LDI and without the
self-focusing term (solid black line); the corresponding asymp-
totic reflectivity is R � 2� 10�3; (b) BSRS with LDI and with
the self-focusing term [solid red (gray) line]; the corresponding
time averaged reflectivity is hRi � 13� 10�3 (dashed line).
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FIG. 3. 1D simulation of BSRS with LDI. Snapshots of the
Langmuir wave (a) and the sound wave (b) at the time t � 21 ps
(3:5� 104!�1

0 ). The plasma size is L � 127�0�800c=!0�.
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parameters, ks is given by ks � 3:1c=!0, and it can be seen
on Fig. 4 that the characteristic width �ks � 1=lcs of the
IAW spectrum is indeed of the order of ks � 3:1c=!0. The
destabilization of the absolute instabilities by incoherence
in the case of an inhomogeneous plasma has been predicted
in the past within the framework of the random phase
approximation (RPA) theory [4]. The RPA theory is valid
if the LW correlation length lcLW

is shorter than the coher-
ent gain length for BSRS, denoted as l0. This condition can
be written �kLW > 1=l0, where �kLW is the LW spectral
width induced by the incoherent IAW generated by LDI,
with �kLW �

1
4 �
!pe

�g;L
�2hj nsn0

j2ilcs. For our simulations pa-

rameters, taking jns=n0j � 0:1, one obtains �kLW�0 �
0:6 and �0=l0 � 0:4, so that the RPA validity condition is
satisfied. Within the RPA theory, the conditions for the
absolute instabilities destabilization are the following in-
equalities: (i) �cs � �g;R��cs � �g;L�< 0 and �g;R�g;L < 0,
which are trivially satisfied in the case of BSRS (here �g;L
denotes the group velocity of the BSRS-generated
Langmuir wave), (ii) GRos >�=2, which is one of the
conditions defining our study domain, and
(iii) �kLW > 1=l0

����������������
�=GRos

p
, which is slightly more severe

than the RPA validity conditions �kLW > 1=l0 in the sub-
domain �=2 � GRos � �, and which is automatically ful-
filled in the complementary subdomain GRos >�. All
these conditions are satisfied in the case of our simulations,
so that our simulations results can be described within the
RPA theory. In order to test our interpretation of the IAWs
generated by LDI being able to restore the absolute nature
of the BSRS instability, we carried out a 1D simulation
over a very long period of time (300 000!�1

0 ): during the
first 150 000!�1

0 , the time average intensities of the fluc-

tuations source terms were kept at their thermal level,
whereas for the second part of the simulation they were
set at zero. We did not observe any modification of the time
average reflectivity past the time t � 150 000!�1

0 . This
result demonstrates unambiguously that once the LDI cas-
cade is established, BSRS is in the regime of absolute
instability, so that the average reflectivity is only deter-
mined by the LDI nonlinear saturation mechanism. Finally,
we observed that for long enough plasmas, the reflectivity
of an inhomogeneous plasma, although larger than the
usual prediction [2] hRi � Rth exp�2GRos�, remains smaller
than the reflectivity of a homogenous plasma of same
length and characterized by its mean density.

The authors would like to acknowledge the fruitful
discussions with M. Casanova and S. Hüller. They would
also like to thank the anonymous referees for their con-
structive remarks, helping them to significantly improve
their manuscript.

[1] M. N. Rosenbluth, Phys. Rev. Lett. 29, 565 (1972).
[2] R. L. Berger, E. A. Williams, and A. Simon, Phys. Fluids B

1, 414 (1989); Ph. Mounaix, D. Pesme, and M. Casanova,
Phys. Rev. E 55, 4653 (1997).

[3] D. R. Nicholson and A. N. Kaufman, Phys. Rev. Lett. 33,
1207 (1974); D. R. Nicholson, Phys. Fluids 19, 889
(1976); G. Picard and T. W. Johnston, Phys. Fluids 28,
859 (1985); G. Bonnaud, D. Pesme, and R. Pellat, Phys.
Fluids B 4, 423 (1992).

[4] G. Laval, R. Pellat, and D. Pesme, Phys. Rev. Lett. 36, 192
(1976).

[5] H. A. Rose, Phys. Plasmas 7, 2571 (2000).
[6] W. L. Kruer and E. Valeo, Phys. Fluids 16, 675 (1973);

J. A. Heikkinen and S. J. Karttunen, Phys. Fluids 29, 1291
(1986).

[7] D. A. Russel, D. F. DuBois, and H. A. Rose, Phys. Plasmas
6, 1294 (1999).

[8] J. L. Kline et al., Phys. Plasmas 13, 055906 (2006).
[9] H. A. Rose, D. F. Dubois, and B. Bezzerides, Phys.

Rev. Lett. 58, 2547 (1987); W. Rozmus, R. P. Sharma,
J. C. Samson, and W. Tighe, Phys. Fluids 30, 2181
(1987); G. Bonnaud, D. Pesme, and R. Pellat, Phys.
Fluids B 2, 1618 (1990); T. Kolber, W. Rozmus, and
V. T. Tikhonchuk, Phys. Fluids B 5, 138 (1993);
B. Bezzerides, D. F. DuBois, and H. A. Rose, Phys. Rev.
Lett. 70, 2569 (1993).

[10] A. J. Schmitt, Phys. Fluids 31, 3079 (1988); H. A. Rose
and D. F. DuBois, Phys. Fluids B 5, 3337 (1993).

0 200 400 600

−0.4

−0.3

−0.2

−0.1

0

0.1

x (c/ω
0
)

n s/n
0

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

k (ω
0
/c)

[n
s/n

0] k

∆k
s
∼ 3 

(b)

FIG. 4 (color online). 1D simulation of BSRS with LDI.
Snapshot (a) and spectrum (b) of the sound wave at the time t �
45 ps (7:5� 104!�1

0 ). The plasma size is L � 127�0�800c=!0�.
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