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Wind tunnel experiments have shown that bumps on the leading edge of model humpback whale
flippers cause them to ‘‘stall’’ (i.e., lose lift dramatically) more gradually and at a higher angle of attack.
Here we develop an aerodynamic model which explains the observed increase in stall angle. The model
predicts that as the amplitude of the bumps is increased, the lift curve flattens out, leading to potentially
desirable control properties. We find that stall delay is insensitive to the wavelength of the bumps, in
accordance with experimental observations.
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Humpback whales [Megaptera novaeangliae, see
Fig. 1(a)] are particularly agile whales, capable of perform-
ing rolls and loops under water [1,2]. Their agility has been
attributed to the bumpy tubercles on the leading edge of
their pectoral flippers [2]. Inspired by this uncommon
leading-edge design, Miklosovic et al. tested model flip-
pers in wind tunnels, and found that the bumps lead to an
increase in stall angle of up to 40% without compromising
lift or drag [3]. Later experiments showed that bumps make
the onset of stall much more gradual [4,5]. Model aircraft
builders have already adjusted wing designs to take advan-
tage of these desirable control properties [6], but the
mechanism remains unclear. In this Letter we demonstrate
that a model based on standard aerodynamic theory ex-
plains most of the experimentally observed phenomena.

Leading-edge bumps on flippers or wings have been
compared to vortex generators [3], which are small objects
placed on a wing that inject momentum into the boundary
layer (i.e., making it turbulent) to delay flow separation [7].
However, it is implausible that bumps on the flippers act as
vortex generators since both the wavelength and amplitude
of the bumps are much larger than the boundary layer
thickness. Here we propose a different mechanism: we
demonstrate that the bumps alter the pressure distribution
on the wing such that separation of the boundary layer is
delayed behind bumps. This ultimately leads to a gradual
onset of stall and a larger stall angle.

To understand the role of the bumpy tubercles, we con-
sider a simple model of a smooth wing, and then show how
the aerodynamic properties of the wing are modified when
bumps are added. Our model considers a wing whose chord
varies on a length scale large compared with its thickness.
Working in this limit allows us to analytically capture the
unseparated flow around the wing up to the attack angles
where separation occurs. We employ an empirical separa-
tion criterion derived for flow around flat plates, which is
approximately correct in the thin plate limit. Since in this
long-wavelength limit there is no spanwise flow, flow
separation at each wing section is assumed to depend on
the upstream flow conditions rather than the flow over
neighboring sections. For the smooth wing we use a clas-

sical elliptic wing [8]; each cross section of the wing is
described by a Joukowski profile; see Fig. 1(c), [9]. For a
typical humpback whale lunging speed of U0 � 2:6 m=s
and ocean viscosity of � � 1:35� 10�6 m2=s, the flow
around the wing has typical Reynolds number Re> 5�
105 [3], and is composed of two different regimes. Near the
wing, there is a (turbulent) boundary layer while outside of
the boundary layer the flow is well-approximated by po-
tential flow, where the circulation � is determined by the
Kutta condition [9]
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Here U0 is the uniform flow velocity, c is the chord length,
t is the thickness, and �e is the effective angle of attack
[see Fig. 1(c)]. Both the chord length and the wing thick-
ness taper off from the root of the wing to the tip [y � 0
and y � s or � � �=2 and � � 0 respectively, see
Fig. 1(b)] such that their ratio t=c is constant. For an
elliptic wing, c��� � c0 sin� and t��� � t0 sin�.
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FIG. 1 (color online). (a) Humpback whale lunging for food;
note the bumps on the leading edge of the pectoral fins.
Photograph by Brett Atkins, obtained from www.dreamstime.-
com. Sketch of the flipper geometry: (b) the planform from
above; (c) cross section of a bump and trough of amplitude �.
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Equation (1) implies that the variation of the chord and
thickness along the wing causes a variation in the circula-
tion �. Such spanwise changes in � generate a sheet of
streamwise vortices behind the wing, which causes a down-
wash w—an oncoming downward flow—at each wing
cross section [see Fig. 1(c)]. This downwash causes the
effective angle of attack to vary along the wing,

 �e � ��
w
U0
: (2)

The magnitude of the downwash can be calculated using
lifting-line theory, which allows us to represent the wing as
a single vortex line of varying strength along the span [8]

 w �
1
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By accounting for the coupling of wing sections through
the downwash generated on the entire wing as in (3), the
flow is three dimensional. However, the absence of span-
wise flow in the long-wavelength limit makes the flow at
each wing section approximately two dimensional.

Writing Eqs. (1)–(3) in terms of � and expanding �e���
and ���� as two Chebyshev series, the integral equation
reduces to a matrix equation which can be solved numeri-
cally. We then use � to compute the lift L by summing the
circulation at each cross section,

 L � ��U0

Z s

�s
��y�dy: (4)

This model of a smooth elliptic wing predicts that the lift
increases continuously with angle of attack [8]. The top
surface of the wing has an adverse pressure gradient px �
dp=dx > 0 over a large part of the wing, since pressure is
minimum near the leading edge where the flow velocity
u�x� is maximum, and then increases towards the trailing
edge. As � increases, the magnitude of this adverse pres-
sure gradient also increases, until at a critical angle of
attack the boundary layer separates over a large part of
the wing, and the wing stalls [7]. For angles of attack above
this critical angle the lift on the wing is severely reduced.
Experimentally, for a smooth flipper with s � 3:6 m and
t=c � 0:23, the critical angle is approximately 12� [3]. At
stall, the lift coefficient CL � L=�12�U

2
0� on a wing section

drops to about 0.6 [4], and results mainly from the vertical
component of form drag.

How are the aerodynamic characteristics of the wing
changed when bumps are added? To investigate this we
analyze our model with a spanwise oscillating chord, and
solve the integral Eq. (1)–(3) both numerically and by a
series perturbation. The latter allows us to clarify the
relative roles of the physical parameters in the problem
(e.g., bump amplitude, wavelength, thickness/chord, etc.).
We define the chord as c��� � c0 sin��1� �S�, where � is
the amplitude of the bumps and S � 1

c0

P
1
k�1 ak cos�k��

describes the perturbation of the wing from a smooth
elliptical wing. Simultaneously expanding the effective
angle of attack and circulation in orders of thickness/chord

ratio T � 4
3
��
3
p t0=c0 and bump amplitude �,
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where each �ei;j is expressed as a Chebyshev series,
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and using (1) it can be shown that
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These equations can be solved to any desired order of �
and/or T. We mention the resulting coefficients bi;jq here to
first order (in subsequent calculations we go to second
order, i.e., O��2; T2; �T�),
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This series perturbation reproduces the aforementioned
result that lift is proportional to � for an elliptic wing for
which only b0;0

1 and b0;1
1 are relevant. Also note how the

role of wavelength � is introduced through the coefficients
b1;0
q>1, since � � 4s=q. We restrict the choice of bump

amplitude and wavelength to keep the total planform area
constant. Since (3) is valid for a high aspect ratio wing
(ratio of span to mean chord), errors are minimal as long as
s dCLdy 	 1 [7]. In our notation, this criterion becomes
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FIG. 2. (a) Calculated pressure profiles on top of a typical
bump and trough and (b) calculated pressure distribution on
the top of a bumpy wing. Note the pressure minimum in the
troughs near the leading edge. Here, � � 6�, � � 0:1.
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4� ��
sin�

s
�	 1. This model therefore operates in the small

amplitude, small angle of attack, and long-wavelength
limit; errors are introduced near the tip where sin� is small.

Figure 2 shows pressure contours for the top surface of a
bumpy wing. Since neighboring bumps and troughs have
similar thicknesses but different chords, the same pressure
difference must be overcome over a shorter distance be-
hind a trough than behind a bump. Hence the pressure
gradient is more adverse behind troughs than behind
bumps, and separation occurs first behind troughs.

Given the location of the separation point, we transpose
the stall criterion from a smooth wing to a bumpy wing. We
use a well known criterion for turbulent boundary layer
separation to compute the location of the separation point
xs [10–12]. Using the nondimensional pressure coefficient
Cp � p�x�=�12�U

2
0�, the criterion reads

 F�x� � Cp

�
x
dCp
dx

�
1=2
�
10�6Re

�
�1=10

; (8)

where if max
F�x�� � 0:40, then F�xs� � 0:40; if 0:35 �
max
F�x��< 0:40, then F�xs� � max
F�x�� and finally if
max
F�x��< 0:35, then separation does not occur. Note
that the pressure coefficient Cp depends on x, as well as the
Reynolds number which is defined as Re � U0x=�. This
criterion was originally derived by matching an arbitrary
imposed outer flow to the flow in the boundary layer, where
the overall flow is assumed to be turbulent. Flow separation
starts at the trailing edge and creeps forward with increas-
ing angle of attack, in accordance with experiments. Any
reasonable separation criterion will lead to the same quali-
tative flow features. The strength of this particular criterion
is that it does not require detailed knowledge of the flow in
the boundary layer.

We thus find �xs=c�elliptic for a smooth wing at stall (� �
12�). To calculate when a bumpy wing is stalled, we
assume that if at any cross section of the wing xs=c <
�xs=c�elliptic, this section is stalled. Sections stall indepen-
dently of neighboring sections, which is reasonable in the
long-wavelength limit since the flow is then predominantly
chordwise and the cause of separation or stall will be the
upstream flow rather than the flow in neighboring sections.
Behind troughs the adverse pressure gradient is larger, and
xs is closer to the leading edge; therefore troughs stall at a
lower angle of attack than the bumps.

In fact, the model shows that there is a strong relation-
ship between the local thickness to chord ratio (t=c) and the
local stall angle, as shown in Fig. 3(a). The bumps, with
relatively small t=c, stall at higher angles of attack. Total
lift on a partially stalled wing is computed by summing the
lift at each cross section, where stalled sections contribute
through the vertical component of the form drag as de-
scribed before. The choice of post-stall lift characteristics
is an empirical input into the model. Calculations show that
the model is not very sensitive to these post-stall character-
istics. Using a constant CL � 0:6 as in Fig. 4(a) or a more

complex behavior resembling, e.g., the NACA 0018 post-
stall lift curve [13] does not significantly alter the results.

We thus obtain the lift curve shown in Fig. 4(a), which
may be compared with data from Johari et al. [4] as shown
in Fig. 4(b). By design, the model shows a smooth wing
stalling quite suddenly at � � 12�. For small amplitude
perturbations (�) of this smooth wing, the transition to stall
becomes slightly less abrupt, and for large � much of the
wing near the troughs will be in stall at smaller angles of
attack, so that the maximum lift coefficient of a smooth
wing is never reached. Conversely, in order for the entire
wing to be in stall even the most slender section near the
bumps must stall. Hence the overall stall angle of the wing
increases, in line with the experimental results. According
to Fish & Battle [14], a typical humpback whale flipper has
� 
 0:06. For such amplitudes the lift curve flattens out at
a fairly high CL, and remains high until stall finally sets in
at an angle of attack that is considerably larger than the
stall angle of a smooth wing. Our model shows that the
wavelength of the bumps has very little influence (Fig. 4);
while wind tunnel data show a small dependence on
wavelength.

There are two contributions to the flattening of the lift
curve. First, by averaging a distribution of thickness/chord
ratios along the wing, the lift curve is flattened out as the
trough sections stall at lower angles of attack than the
peak-sections, independent of the global flow coupling. A
further flattening is caused by the global coupling between
different wing sections that determine downwash as in (3).
We may separate downwash into a spanwise uniform com-
ponent which occurs for a smooth wing (i.e. including �e0;0
and �e0;1 in (6)) and an additional nonuniform component
due to bumpiness (all other �ei;j). In Fig. 3(b) we compare
the proportion of wing area in stall with and without the
nonuniform downwash component, and find that nonuni-
form downwash contributes to stall delay. The downwash
is larger at the bumps relative to the troughs, leading to a
decrease in effective angle of attack [see (2)], further
delaying stall for the bumps. The variations in downwash
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FIG. 3. (a) Local stall angle on a wing section calculated as a
function of thickness to chord ratio, showing a monotonic
decrease. (b) Percentage of wing area in stall for: (dashed line)
uniform downwash terms, i.e., including �e0;0 and �e0;1 in (6) only
and neglecting the influence of the bumps in the downwash;
(solid line) full downwash including all �ei;j and thus the influ-
ence of the bumps (� � 0:1, s � 3:6 m, k � 36).
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along the wing are significant, especially when the wing is
nearly in stall [see Fig. 3(b)].

In addition to predicting delayed stall, our calculations
agree with many other aspects of the experiments. The
observation that flow separation occurs first behind troughs
is supported by wind tunnel experiments [4] and simula-
tions [15]. The pressure contours in Fig. 2 predict that
absolute pressure is lowest in troughs; water tunnel experi-
ments show cavitation occurring there first [16]. Regarding
drag, early simulations [17] and wind tunnel experiments
suggested that bumpy wings might generate slightly more
lift than smooth wings, and lower drag at angles of attack
larger than the stall angle of a smooth wing. Our calcu-
lations do not show any appreciable difference in the
induced drag generated by bumpy wings, but for short
enough wavelengths, a very slight improvement in L=Di
can be observed, never much larger than 0.1% [18].

In conclusion, we note that our aerodynamic model
captures the main features exhibited by wing section ex-
periments, namely, a more gradual stall and a higher over-
all stall angle. The original experiments by Miklosovic
et al. [3] showed a larger maximum lift coefficient and a
somewhat sudden stall; neither our model nor the experi-
mental work on wing sections reproduce these features.
This discrepancy may be due to tip effects which cannot
occur in the wing section experiments of Johari et al. [4],
and cannot be described accurately by our current model as
described before. Future work should address these tip
effects, as well as the potential role of leading-edge vorti-
ces if these are found to be present.

It remains an open question why only humpback whales
are observed to have these leading-edge bumps, and if
indeed they are beneficial for the species. Gradual stalling
and larger overall stall angles increase the range of � over
which a wing or flipper contribute to maneuverability,
while decreasing the unpredictability of lift forces near
the stall transition. It is possible that the lessons learned
from humpback whale flippers will soon find their way into
the design of special purpose wings, hydrofoils, as well as
wind turbine and helicopter blades.
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FIG. 4 (color online). Lift curves from (a) our model and (b) Johari et al. [4]. The black solid lines correspond to the unperturbed
wing; the other solid lines correspond to 8 bumps per wing, while open symbols denote 4 bumps. Amplitudes are color coded: red
� � 0:025; green � � 0:05; blue � � 0:12. In both (a) and (b), planform sketches are included for � � 0, 0.025, 0.05 and 0.12.
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