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Natural light fields are threaded by lines of darkness. For monochromatic light, the phenomenon is
familiar in laser speckle, i.e., the black points that appear in the scattered light. These black points are
optical vortices that extend as lines throughout the volume of the field. We establish by numerical
simulations, supported by experiments, that these vortex lines have the fractal properties of a Brownian
random walk. Approximately 73% of the lines percolate through the optical beam, the remainder forming
closed loops. Our statistical results are similar to those of vortices in random discrete lattice models of
cosmic strings, implying that the statistics of singularities in random optical fields exhibit universal
behavior.
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Random physical processes often lead to complicated
volume fields occurring in electromagnetism [1], quan-
tum mechanics [2] and fluid mechanics. Turbulence in
the latter is characterized by tangles of vortex lines, par-
ticularly in superfluids [3]. Random optical fields, espe-
cially speckle—familiar to all users of lasers—are also
intertwined by optical vortices: optical phase singularities
which are lines in three dimensions and places of complete
destructive interference [4]. Around any of these lines, the
optical phase changes by 2� and the local phase fronts are
helical, inducing an optical vortex in the azimuthal energy
flow [5], which can be understood as a localized orbital
angular momentum [6]. The lines are easily observed in
laser speckle, where the familiar black specks are inter-
sections of the lines with the image plane. Vortices in
speckle have been well studied [7–10], but with emphasis
on transverse 2D properties [1].

As laser speckle is the interference pattern generated by
the random scattering of a coherent source, it can be
described as a superposition of a large number of random
plane waves. For three and four plane waves, the possible
vortex topologies are arrays of infinite straight or helical
lines, or planar loops [11]. When more plane waves are
added at random, the three-dimensional topology becomes
more complicated, and its statistics has hitherto lacked any
systematic study. Nevertheless, this statistical topology is
universal for random linear wave superpositions regardless
of the physical system that they describe. Superficially
similar tangles of quantized vortex lines have been much
studied [12] in fields as diverse as BECs [13], superfluid
turbulence [3], liquid crystals [14], and cosmic strings
[15,16]. In particular, the vortex structure studied in
Ref. [16] has fractal properties very close to our findings
for light.

The interference pattern formed by the superposition of
plane waves is a deterministic problem and can therefore
be calculated over any finite volume. In order to resolve
topological ambiguity at the edges, we choose wave vec-
tors lying on a rectangular grid in k space, making the

interference pattern periodic in x, y, and z [17]. By tiling
space with such Talbot cells, every vortex line eventually
returns to its starting point within a cell. If this occurs
within the same cell (i.e., after a zero net number of cell
crossings), then the vortex is a closed loop, otherwise the
vortex feature is an infinite periodic line.

To model such superpositions we generate sets of plane
waves of wavelength � � 2�=k0, on a k-space grid of
spacing �k. The real and imaginary components of the
amplitude of each wave are Gaussian distributed, and the
whole grid is subject to a Gaussian angular spectrum,
characterized by a numerical aperture of K�=k0, where
K� is the standard deviation of the transverse component
of the wave vectors. These Gaussian distributions are
typical of those created by an expanded laser beam scat-
tered from a rough surface [1]. A concern is that the
periodic interference patterns resulting from a discrete
and finite k space may not be representative of those
generated from a continuous distribution. We therefore
have calculated patterns based on different sizes of grid
and tested the stability of the vortex statistics. In our case,
for k-space grids larger than 23� 23, the transverse vortex
point density converges to the theoretical values predicted
for a continuous spectrum [18,10]. In addition the 3D
statistics also converge. We assume therefore that the
interference patterns created from larger k-space grids
are representative of the continuum.

Consequently, we use a 27� 27 k-space grid and cal-
culate over a Talbot cell of 500� 500� 4000 voxels. The
Talbot cell’s lateral and axial periodicities are 2�=�k and
4�k0=�k2, respectively. We use K�=k0 � 1=330, which is
typical of a light field with low numerical aperture and
corresponds to cells millimeters wide and metres in length.
The vortex density is made isotropic by defining natural
lateral and axial length scales [10]:
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our observations in this natural unit, the results are inde-
pendent of � and K�, provided K� � k0.

Using a high-end desktop computer, a random k-space
distribution, the associated Talbot cell and subsequent
vortex analysis can be completed in around 30 hours.

To complement our numerical simulations, we measured
the vortex line topology in volumes of experimentally
created laser speckle, synthesized by inserting a ground
glass screen into a collimated HeNe (� � 633 nm) laser
beam. Interferometric measurements of intensity and phase
in successive cross sections in an experimental arrange-
ment similar to that in Ref. [19] allowed us to map the
three-dimensional vortex structure. Figure 1 illustrates
examples of a numerically generated and experimentally
observed Gaussian speckle pattern, showing both the
bright optical speckles and the associated network of vor-
tex lines.

Since the field of view of our experimental data is
limited by the size of detector array, vortex lines that
penetrate the sides of the volume cannot be distinguished
from being segments of larger loop structures. Conse-
quently, the possible statistical comparisons between the
experimental and numerical data are limited. Inspection of
Fig. 1 and other sets of data suggests that the simulated
vortex structure is indeed similar to that of experimental
observations. In both simulations and experiments, the
transverse autocorrelation is Gaussian, giving the same
vortex density, 2�=�2 [10,18]. We observe that the aver-
age number of closed vortex loops wholly enclosed within
a natural unit volume for calculated data is 2:6� 1:6
(averaged over 50 natural volumes) and for experimental

data, 2:0� 1:5 (averaged over 40 natural volumes).
However, the limited field of view of our experimental
data means that more detailed analysis relies on numerical
simulation.

Figure 2 shows a single intensity transverse cross-
section through the entrance face of a numerical Talbot
cell and the full vortex line structure within the cell pro-
jected onto the yz-plane. The natural volume of Fig. 1 is
only a small fraction of the volume of the associated Talbot
cell, and the latter tiles three-dimensional space—allow-
ing vortex loops to be unambiguously distinguished from
infinite periodic vortex lines.

Analysis of several hundred Talbot cells generated using
Gaussian distributions of wave vectors shows that periodic
vortex lines account for about 73% of the total vortex line
length, leaving 27% of the total vortex length as closed
loops. This ratio is similar to that numerically found for the
random lattice model of cosmic strings of Ref. [16]. In that
work, each point of a cubic lattice (also with periodic
boundary conditions) is independently assigned a random
discrete phase 0, 2�=3, or 4�=3 and interpolation through
the volume gives a 3D quantized vortex tangle.

Since vortex lines are continuous we conjecture that
many vortex lines completely traverse, i.e., percolate,
real speckle fields of finite extent. In regions of low inten-
sity, the field is strongly affected by background vacuum
fluctuations [20], so the vortices are not stationary there.
Consequently, although the vortex structure and topology
are fixed within the bright regions of the beam, they are
physically undetermined outside it.

Experiment [21] has confirmed predictions [22] that spe-
cific superpositions of physical beams can contain linked
and knotted vortex loops. We find that such topological

FIG. 1 (color online). Vortex structure in speckle: (a) experimental vortex structure obtained through interferometric measurements
of laser speckle created by the scattering of a 10 mm diameter HeNe laser beam through a ground glass screen and (b) numerical
simulation of the vortex structure from Gaussian random wave superposition. The open vortex lines are plotted in red and the closed
loops in dark green. Surfaces of 50% maximum intensity are also shown. Both are plotted over one natural volume of the speckle,
�x ��y ��z. Although different in detail, the two patterns have similar characteristics.
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configurations are extremely rare in our random interfer-
ence patterns, with fewer than 1 in 100 loops threaded by a
vortex line, and no knotted or linked loops have been
found. Even in the controlled creation of loops and knots,
the configuration dissolves on perturbation [23], and it is
likely that such topologies occupy similarly small regions
of probability space, hence are rare in random fields.

We investigate the self-similarity—that is, fractality—
of the simulated vortex lines. The average arc length R
between any two points on such a line, separated by a
Pythagorean length L, is given by

 hRi � P1�nLn; (2)

where P is a characteristic length scale below which the
line is approximately straight. The reciprocal of n is the
fractal dimension of the line [24]: for a straight line, n � 1,
and for a Brownian random walk, n � 1=2.

Figure 3 is a log-log plot of the Pythagorean distance
between points on the infinite vortex lines, sampled over
many lines from different Talbot cells. It is linear over two
decades, empirically implying significant self-similarity.
The gradient 0:52� 0:01 suggests that over the marked
range, the smoothly curved vortex lines are a close ap-
proximation to a Brownian random walk, with fractal
dimension approximately 2. The y intercept indicates a
persistence length P � 0:5�, comparable to the coherence
length of the optical field. As expected, at length scales
below P, the vortex lines are straight (the curve gradient
is 1). At longer length scales, the vortex lines inherit the
periodicity of the Talbot cell array, again giving a gradient
tending to unity.

Following Ref. [16], we consider the implication of
scale invariance—for length scales significantly greater
than P—on the size distribution of vortex loops. If the
loop distribution is the same at all scales, then the number
dN of closed loops per unit volume with sizes between R

and R� dR, from Eq. (2) with Brownian exponent n �
1=2, is [16]

 dN � CP�3=2L�5=2dL; (3)

where C is a dimensionless numerical constant.
Figure 4 shows the loop length distribution from the

simulations. The distribution has a peak in loop size of
approximately 0:3�, and suggests 3.9 loops per natural
volume, both of which are consistent with Fig. 1 and other
superpositions. For larger loops, the gradient�2:46� 0:02
is consistent with Eq. (3), again supporting our observation

FIG. 3 (color online). The Pythagorean distance between two
points on an infinite periodic line as a function of vortex line
length, averaged over many pairs of points. Data is obtained
from various speckle superpositions calculated using a k-space
grid size of 27� 27 in size. Circles mark the mean from 100
lines from different speckle superpositions and the straight line is
the least square fit through the mean values. The gradient of
0:52� 0:01, fitted over the marked range, suggests a scale
invariance over which the vortex lines have random walk, i.e.,
Brownian characteristics. The upper limit of this range is solely a
result of the periodicity of the line.

FIG. 2 (color online). Tangled vortices in a Talbot cell. An intensity xy-cross section at the entrance face of a Talbot cell (a) and the
associated vortex structure of a portion of a full cell (b). The subscript T denotes the Talbot period in that direction. Closed vortex loops
and open vortex lines are shown in black and red, respectively. For comparison, an outline square (in thick black) shows the cross
section of one natural volume �x ��y ��z.
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that the vortex structures have a fractal self-similarity of
Brownian character.

The results for the large-scale structure of the vortex
lines and the size distribution of loops support the hypothe-
sis that vortex lines in speckle fields display some degree of
scale invariance. The lines have fractal dimension approxi-
mately 2 (Brownian), and the loop length distribution is
consistent with this and scale invariance. These results are
very similar to those found in the lattice model of
Refs. [16,25], determined by independent random varia-
bles at discrete lattice sites, whereas our vortices are the
nodes of independent random wave superpositions. This
similarity may therefore be compared to that found [26]
between nodal domain distributions in 2D real random
waves, and two-dimensional percolation. The interpreta-
tion of the vortices in the model of Ref. [16] was as the
configuration of cosmic strings in the early universe; how-
ever, cosmic strings, as with other quantized vortices in
physics such as those in superfluids, evolve according to
nonlinear dynamics, which affects the overall fractal di-
mension [27] and loop length distribution [28]. We empha-
size that the optical fields considered here are both linear
and monochromatic, so there are no energetic considera-
tions, and the statistics depend only on the probability
distribution of the superposed random waves. We antici-
pate a closer analogy with other vortex systems for optical
interference in a nonlinear medium, which would give an
energy cost associated with vortex line curvature. The
results presented here have been for a Gaussian angular

spectrum, how many of these results are universal for all
optical fields remains a point for further investigation.
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FIG. 4 (color online). The observed length distribution of
vortex loops within numerically calculated random speckle
patterns. Data is obtained from various speckle superpositions
calculated using a k-space grid size of 27� 27 in size.
Approximately 80 000 loops are included in this distribution.
The average number of loops contained within the natural
speckle volume is 3.9 and the most common loop length is
readily contained within it. The number density of large loops
decreases, over the marked range, with a gradient of ��2:5,
consistent with Brownian scale invariance.
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