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We demonstrate spatial solitons via twin-beam second-harmonic generation in hexagonal lattices
realized by poling lithium niobate planar waveguides. These simultons can be steered by acting on
power, direction, and wavelength of the fundamental frequency input.
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Nonlinear physics in periodic lattices is rich and fasci-
nating in several branches, from biology [1] to solid state
physics [2], ferromagnetism [3], and Bose-Einstein con-
densates [4]. In optics, spatial solitons (SS), i.e., self-
guiding light filaments, are one of the most intriguing
outcomes of nonlinearity [5,6] and a frontier in periodic
systems [7]. SS in media with periodically structured linear
properties have been intensely investigated [8–12], but
only recently in higher dimensionality (2D) lattices
[13,14]. Previous studies have dealt with photonic crystals
and Kerr-like nonlinearities [15], photorefractive media
[8], and Bose-Einstein condensates [16].

Another scenario for nonlinear waves in periodic struc-
tures has been enlightened by quasi phase matching (QPM)
[17] in quadratic crystals such as LiNbO3 [18], which can
create purely nonlinear photonic lattices (NPL) where,
rather than the linear ��1�, the quadratic ��2� susceptibility
is periodically modulated in 1D [17,18] or 2D [19,20]. A
quadratic response can sustain multicolor SS (or simul-
tons) [21] through parametric generation and amplification
that counteract diffractive beam spreading [22]. Nearly a
decade ago, mutual trapping and spatial locking of multi-
frequency components into simultons were demonstrated
in uniform ��2� media [23], confirming the predictions in
Ref. [24]. The study of ��2� solitons has largely progressed
[25], including 1D QPM gratings [26].

Hereby we report for the first time spatial simultons
in two-dimensional quadratically nonlinear lattices. With
reference to SS via twin-beam second-harmonic gen-
eration (TB SHG) [27], we demonstrate their enhanced
wavelength-dependent and spatial features stemming from
the higher dimensionality NPL.

Figure 1(a) illustrates our 2D NPL structure. A 2D sign-
modulated distribution of the quadratic susceptibility ��2�

is achieved by electric field poling [18] on a z-cut 500 �m
thick congruent LiNbO3 crystal. The 2D lattice consists of
an 8� 18 mm2 hexagonal array (HexLN) of ferroelectric
domains with reversed polarity and period � � 16:4 �m
[Fig. 1(b)]. A planar waveguide for light confinement
along z is subsequently embedded in the 2D NPL by the
fabrication sequence of proton exchange in pure benzoic

acid (29 h at 170 �C), thermal annealing (13 h at 200 �C
and 7 h at 330 �C), and, finally, reverse proton exchange in
a LiNO3:NaNO3:KNO3 eutectic melt (28 h at 320 �C) [27].
Such a waveguide is optimized for efficient guided-wave
TB SHG from 1530–1650 nm where it supports only the
TM0 eigenmode. The planar configuration leaves unaf-
fected the in-plane degrees of freedom of the 2D lattice
while significantly enhancing the SHG efficiency, the latter
playing a key role in lowering the required soliton power.
Figure 1(c) sketches TB SHG: a fundamental frequency
(FF) pump at �! � 1550 nm, propagating at a small angle
(�!) with respect to the symmetry axis (

P
) of the planar

NPL, excites two SHG resonances with outputs SH��� and
SH���. Efficient SHG occurs as momentum conservation
(i.e., quasi phase matching) is granted by the NPL via two
of its lowest-order reciprocal lattice vectors G��� and G���

FIG. 1 (color online). (a) Sketch of a HexLN planar wave-
guide. (b) TB SHG geometry (top view, �z face). (c) QPM
diagram in the �-� plane. (d) SHG resonant wavelengths [��	�]
versus FF incidence angle �!: measurements (diamonds) and
linear fits (solid lines). The dotted lines indicate phase matching
for �! � 0:58�, as discussed in Fig. 3.
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at 	30� with respect to
P

, respectively, with jG���j �
jG���j � 4�=��

p
3�. For the two noncollinear SHG pro-

cesses FF� FF! SH��� and FF� FF! SH��� the QPM
conditions take the vectorial form [Fig. 1(c)]:

 ����� � 2�! � �2!
����G��� � 0 (1)

 ����� � 2�! � �2!
��� �G��� � 0; (2)

�!, �2!
���, and �2!

��� being the wave vectors for FF, SH���,
and SH��� TM0 modes, respectively. In a frame of refer-
ence with axis �̂ � �!=j�!j parallel to the FF launch
direction and an orthogonal axis �̂ ? �̂[Fig. 1(c)],
Eqs. (1) and (2) can be reduced to the scalar form:
 

���	�� � 2j�!j � j�2!
�	�j cos�2!

�	� � jG�	�j cos��=6
 �!�

� 0 (3)

 

���	�� � 2j�!j � j�2!
�	�j sin�2!

�	� � jG�	�j sin��=6
 �!�

� 0; (4)

where �2!
�	� are the angles between �2!

�	� and �!. For a
given FF incidence angle �!, the above identify two SHG
resonant wavelengths ���� and ���� for FF� FF! SH���

and FF� FF! SH���, respectively. Their wavelength
separation can be adjusted from zero, i.e., ���� � ���� �
�0 (symmetric TB SHG, �! � 0�), to several nm just by
varying the FF angle of propagation, as shown in Fig. 1(d).

The mismatches ���	�� and ���	�� depend on both the
wavelength (�!) and the propagation angle (�!) of the FF
pump. The Ewald sphere constructions [19] with j�!j< 3�

and �! 2 �1530–1650� nm indicate that j���	�j �

���	� � ���	�� , with �2!
�	� � 	0:012 rad. By combining

interpolation of QPM data in Fig. 1(d) with the calcu-
lated TM0-mode dispersion, we obtain the empirical de-
pendence ���	�jcm�1�1:54���!��0�jnm
12:3��!jdeg,
with �0 the resonant value for symmetric TB SHG (�! �
0�). Neglecting higher-order resonances, the (equal) non-
linear strengths associated with G��� and G��� can be
derived via a 2D Fourier analysis of perfect hexagonal
lattices:

 � �
�

3

�2 d33

�
2!2

c2

�����������������������
!�0

�2
!�2!heff

s
; (5)

with d33 the nonlinear tensor element, �0 the magnetic
permeability, c the speed of light in vacuum, and heff �
3:2 �m the effective SHG depth.

To gain insight into parametric wave dynamics, first we
analyze wave propagation in the planar NPL. To this extent
we model TB SHG in �1� 1�D with a set of coupled mode
equations for the slowly varying envelopes A and B�	� for
FF and SH�	� waves, respectively:
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(6)

Transverse and longitudinal coordinates � and � [Figs. 1(b)
and 1(c)] are normalized to the input beam waist (wo) and
diffraction length LD � �!wo2=2, respectively. Equa-
tions (6) are integrated with a split-step beam propagator
in the FF-pulse frame of reference, using a Gaussian trans-
verse distribution of the FF input A��; � � 0� � exp���2�
and scaling the field envelopes to the square root of the FF
power P0 (for pulsed excitations P�t� � P0w0��=2��1=2�
exp
��t=
�2�). We adopt a quasistationary—cw point-
wise—approach, appropriate to our experimental condi-
tions where temporal walk-off can be neglected.
Equations (6) account for in-plane angular deviation of
the SH��� beams [�2!

�	� � �2!
�	�LD=w0 �	1:5], as well

as diffraction at FF and SH [	! � LD=�2�!w0
2� � 1=4

and 	2!
�	� � LD=�2�2!w0

2� � 1=8]. The normalized mis-
matches ���	� � ���	�LD and nonlinear coupling 
�	� �
�LD
p
P0 define a parameter space wider than conventional

SHG.
Let us first consider symmetric TB SHG, where �! � 0

and ����� � �����. Figures 2(a) and 2(b) display the
evolution of FF and SH in the plane f�� �g for propaga-
tion over six diffraction lengths at low (
�	� � 0:01) and
high (
�	� � 5:0) excitations, respectively, for ����� �
����� � 5�. In the linear regime [Fig. 2(a)] the FF dif-
fracts in �, whereas the SH flows preferentially along the
two directions determined by QPM [Eqs. (1) and (2) and
Fig. 1(c)]. At high excitations [Fig. 2(b)] the parametric
exchange between FF and SH leads to mutual trapping and

FIG. 2 (color online). Simulated TB SHG with continuous-
wave input. FF and SH propagation for (a) ����� ������ �5�,

�	� � 0:01; (b) ����� ������ �5�, 
�	� �5; (c) ����� �
�20�, ����� � �, 
�	� � 5.

PRL 100, 053901 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
8 FEBRUARY 2008

053901-2



locking into a simulton. The cascading signature of para-
metric solitons can be recognized in the oscillations in the
early stages of propagation [22]. Each of the two noncol-
linear SHG processes tends to confine the FF into a ‘‘walk-
ing soliton’’ with a net angular deviation (��	�2! ) toward the
corresponding SH wave vector ��	�2! [28–30]; as the two
symmetric SHG pulling actions balance each other, the
ultimate result is a two-color SS propagating along the
initial FF direction (� � 0). The analysis versus detuning
shows that simultons are formed in two bands around
����� � � and ����� � �, as well as in a wider region
where both mismatches are positive. Figure 2(c) illustrates
FF and SH propagation for ����� � � [and ����� � �,
after inversion of the � axis] where the FF� FF! SH���

[FF� FF! SH���] interaction prevails, with a net posi-
tive [negative] lateral shift of the spatial simulton due to the
pulling from the relevant SH component.

These simulations provide useful guidelines for experi-
ments in our HexLN waveguide as the three main control
parameters available in the experiments, namely, the FF
launch peak power (P!), wavelength (�!), and propaga-
tion angle (�!), are directly related to �����, �����, and

�	� /

p
P!. The HexLN waveguide is mounted on a

piezoelectrically controlled stage, stabilized at �85 �C to
prevent photorefractive damage. The NPL is excited at FF
in the range 1:1–1:6 �m by 20 ps (FWHM) narrow line-
width (<2 cm�1) pulses delivered by an optical parametric
generator operating at 10 Hz. The angle �! is adjusted by
rotating the sample around its optic axis z, while the FF
input is shaped into a cylindrical Gaussian spot (lateral and
vertical waists w0 � 27:5 �m and v0 � 3:4 �m, respec-
tively) and end-fire coupled to launch the TM0 mode. Its
propagation in the 18 mm long NPL amounts to �5:4
diffraction lengths (LD � 3:3 mm). At the device output,
the FF and SH are monitored by time-gated photodiodes
and imaged on Vidicon and CCD, respectively. The output
images are then filtered to eliminate background noise and
corrected for the camera gamma-factor (�0:7). The rele-
vant FF output parameters, namely, spot-size (wout) and
displacement (�x), are extracted via Gaussian best fits of
the beam along x.

Figure 3 illustrates the experimental data for asymmetric
TB SHG, with �! � 0:58�, where the 2D lattice exhibits
distinct resonances at ���� � 1546:5 nm and ���� �
1555:7 nm. The output FF lateral profile in the linear
regime (diffraction) is plotted in Fig. 3(a) (the two arrows
indicate the directions in which the FF is pulled by the
SHG resonances). Figures 3(b) and 3(c) show the FF output
component of the simulton at two pump wavelengths close
to ���� and ����, respectively. For ���� � �! < ���� [i.e.,
����� ’ � and ����� < 0] the confinement stems from the
SH��� resonance, which shifts the soliton toward negative
x. For �! � ���� [i.e., ����� > ����� ’ �], conversely,
the SS is shifted toward positive x due to the dominant

SH���. The full soliton response versus �! is presented in
Figs. 3(d) and 3(e) with good agreement between data
(circles) and numerical predictions (solid lines), the latter
based on the integration of Eqs. (6) with parameters ex-
tracted from the experimental conditions. In Fig. 3(d) the
two spectral regions close to ���� or ���� for maximum
self-confinement are apparent. As discussed with reference
to Figs. 3(b) and 3(c), the corresponding lateral shift of the
simulton is either negative or positive [Fig. 3(e)], depend-
ing on the prevailing SHG process. Therefore, the doubly
resonant 2D NPL in the asymmetric configuration entails
beam routing by the sole means of the FF wavelength, an
entirely new approach to soliton steering not available by
conventional singly resonant SHG.

Figure 4 displays the TB SHG simulton response for
�! ! 0, i.e., the nearly symmetric case when ��	� ! �0 �
1551:1 nm. Figures 4(a)– 4(e) plot the acquired FF com-
ponent of the output beam for increasing powers at �! �
1553:0 nm, where ���	� � �. The competing action of the
two SHG processes, both close to resonance, yields an in-
teresting dynamics as the excitation is increased well into
the soliton regime (P! � 20 kW). The harmonics are ini-
tially confined and displaced toward x > 0 [Fig. 4(b)]; then
the beam develops a second hump in x < 0 [Fig. 4(c)], until
it eventually returns to being singly humped with a shift
toward x < 0 [Fig. 4(d)]. Finally, for P! � 60 kW the
output stabilizes around x � 0 [Fig. 4(e)]. Although this
behavior is not entirely stationary as both simulations and
data show residual breathing and transverse dynamics of
the self-confined beam (due to the combined SHG reso-

(a)

x (µm)

λω=1556.0 nm

SHG(−) SHG(+)

P ω
ou

t

-200 0 200

x (µm)
-200 0 200

λω=1547.8 nm

P ω
ou

t
P ω

ou
t

λω [nm]

50

100

150

200

250

-50

0

50

1540 1560 1580 1600

w
ou

t
[µ

m
]

∆
x

[µ
m

]

(d)

(c)

(b)

λ(−) λ(+)

(e)x (µm)
-200 0 200

(e)

FIG. 3 (color online). Asymmetric TB SHG, with �! � 0:58�,
���� � 1546:5 nm, ���� � 1555:7 nm. FF output beam profiles
along x at (a) low and (b),(c) high excitations (peak powers:
P! � 0:5 kW and 22 kW, respectively). (b) �! � 1547:8 nm
and (c) �! � 1556:0 nm. The thin lines are Gaussian fits.
Evolution of the FF output (d) beam waist (wout) and
(e) lateral displacement (�x) versus pump wavelength.
Measurements (averaged over 100 samples) at P! � 22 kW
(dots) and simulations for 
�	� � 4 (pulsed regime) exhibit
lowest output waists slightly larger than the input.
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nances), control of the SS profile and its displacement is
available by acting on �! and P!. The wavelength re-
sponse in the nearly symmetric configuration for high
enough excitations is presented in Figs. 4(f) and 4(g).
Since ��	� ! �0, the wout-�! characteristic exhibits a
single dip after �0, corresponding to the formation of an
SS for ���	� � � [31]. While this resembles the behavior
of quadratic solitons via singly resonant SHG, a compari-
son at equal power levels [Fig. 4(f), dashed line] reveals a
broader wavelength interval for self-trapping, stemming
from the synergetic action of the two SHG processes.

In conclusion, we presented the first results on para-
metric spatial solitons in a 2D purely nonlinear lattice.
The higher dimensionality allows to map two concurrent
SHG processes into the spatial-spectral domains [31]; ex-
periments in planar NPL in LiNbO3 buried waveguides
encompass a wealth of wave dynamics, including SS steer-
ing by wavelength, angle, and power. Further investiga-
tions will address higher-order resonances, quasicrystals
[32], and (multi-) stability.
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FIG. 4 (color online). Nearly symmetric TB SHG: �! ! 0�

and ���� ! ���� ! �0 � 1551:1 nm. (a–e) FF output beam
profiles at �! � 1553:0 nm, for peak excitations P! � 0:5,
30, 40, 50, and 60 kW (external powers), respectively.
(f) Evolution of the FF output (wout) and (g) lateral displacement
(�x) versus �!; data for P! � 25 kW (dots) and simulations for

�	� � 4 and �! � 0:05�. The dashed line refers to singly
resonant SHG.

PRL 100, 053901 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
8 FEBRUARY 2008

053901-4


