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We compute the momentum diffusion coefficient of a heavy quark in a hot QCD plasma, to next-to-
leading order in the weak-coupling expansion. Corrections arise at O�gs�; physically they represent
interference between overlapping scatterings, as well as soft, electric scale (p� gT) gauge field physics,
which we treat using the hard thermal loop effective theory. In 3-color, 3-flavor QCD, the momentum
diffusion constant of a fundamental representation heavy quark at next-to-leading order is � �
16�

3 �2
sT

3�ln 1
gs
� 0:07428� 1:9026gs�. The convergence of the perturbative expansion is poor.
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The experimental program at the relativistic heavy-ion
collider and the future heavy ion program at the LHC are
exploring the behavior of the QCD plasma at temperatures
above the ‘‘deconfinement’’ temperature of �170 MeV.
So far the evidence is for a medium which interacts more
strongly and thermalizes more quickly than expected. For
instance, experimental results on elliptic flow are well
explained by hydrodynamics [1] but only if the shear
viscosity is much less than a naive extrapolation of
weak-coupling calculations [2,3]. Similarly, heavy quarks
display substantial elliptic flow and a degraded energy
spectrum [4], implying stronger medium interactions than
extrapolated weak-coupling calculations can easily accom-
modate [5].

How well can we trust weak-coupling calculations for
dynamical quantities in hot QCD at couplings anywhere
close to those probed in experiments? Naively the pertur-
bative series converges in powers of the strong coupling,
�s �

g2
s

4�� 0:4 for relevant temperatures. But perturbative
series often show convergence which is much better or
much worse than one would guess from the value of the
coupling. In general determining how well a perturbative
expansion converges requires evaluating a few terms in the
expansion. Unfortunately, no dynamical transport quantity
in QCD which involves large length or time scales (such as
shear and bulk viscosity, electric conductivity, photon pro-
duction, and heavy quark momentum diffusion) is known
beyond leading order.

Here we present a next-to-leading order calculation of
the theoretically simplest of these quantities, the momen-
tum diffusion coefficient of a nonrelativistic heavy quark.
This coefficient (partially) characterizes how quickly
heavy quarks are thermalized and swept up in the collec-
tive flow of the plasma [6].

A heavy quark, M� T, in or near equilibrium has a
typical momentum p�

��������
MT
p

� T and it therefore takes a
parametrically long time for the momentum to randomize.
Hence, momentum changes accumulate from many uncor-
related ‘‘kicks’’, so on long time scales p will evolve via
Langevin dynamics,

 

dpi
dt
���Dpi��i�t�; h�i�t��j�t0�i���ij��t� t0�: (1)

The relaxation rate �D and the momentum diffusion con-
stant � are related by a fluctuation-dissipation relation,
�D �

�
2MT . Thus the dynamics of the nonrelativistic heavy

quark is completely set by the single parameter �. This
parameter can be obtained by computing the mean squared
momentum transfer per unit time in the underlying micro-
scopic theory. In gauge theory, this mean squared momen-
tum transfer equals the time integrated correlator of two
electric field operators connected by fundamental Wilson
lines [7]:

 � �
g2

3dH

Z 1
�1

dtTrHhW�t; 0�yEai �t�T
a
HW�t; 0�Ebi �0�T

b
Hi;

(2)

where W�t; 0� denotes a fundamental Wilson line running
from t0 � 0 to t along the static trajectory of the heavy
quark and TaH, dH � 3 are the representation matrices and
dimension of the heavy quark’s representation.

Intuitively, Eq. (2) is exactly the force-force correlator of
Eq. (1), with the forces given by electric fields and the
Wilson line representing the gauge rotation of the heavy
quark due to propagation, which ensures gauge invariance.
Because of operator ordering issues, the Wilson lines are
not equivalent to connecting the E fields with an adjoint
Wilson line. Such Wilson lines are required even in QED,
where they lead to non-Z2 contributions to the diffusion of
an ion of charge Z arising from the reaction of the plasma
to the presence of the charge.

We start by showing how this formula reproduces the
well-known [8] leading-order momentum diffusion coeffi-
cient. At this order, (2) simplifies to a zero-frequency
Wightman correlator of two A0 fields (the Ai fields do
not contribute to the electric field operators at zero-
frequency in covariant and Coulomb gauges):

 �2� )
CHg

2

3

Z d3p

�2��3
p2G>00�! � 0; p�; (3)
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where CH �
4
3 is the Casimir operator of the heavy quark’s

representation. This Wightman correlator can be evaluated
in terms of the squared matrix elements of t-channel scat-
tering processes involving the heavy quark, as illustrated in
Fig. 1. These are the only processes which contribute in our
case, Compton-like processes being suppressed in the low
velocity limit. The result reduces to [6]
 

�LO �
g4CH
12�3

Z 1
0
q2dq

Z 2q

0

p3dp

�p2 �m2
D�

2

	

8<
:
NfnF�q�
1� nF�q�� �2�

p2

2q2�

�NcnB�q�
1� nB�q�� �2�
p2

q2 �
p4

4q4� :
(4)

Here p is the transferred momentum and q is the energy of
the light scattering target. Since the heavy quark is at rest,
the initial and final light-particle energies are equal and p is
purely spatial, which is why the medium modification of
the exchanged gluon propagator is purely Debye screening
with a Debye mass m2

D � g2T2�Nc � Nf=2�=3. The inclu-
sion of these hard thermal loop (HTL) corrections is es-
sential for obtaining the complete leading-order result;
otherwise � would be infrared divergent in the region of
soft momentum transfer p. Formally taking mD � T, the
integral is dominated by q� T and p in the parametric
range mD & p & T. The strict leading-order evaluation of
Eq. (4) yields

 � ’
CHg4T3

18�

�
Nc

�
ln

2T
mD
� �

�
�
Nf
2

�
ln

4T
mD
� �

��
; (5)

with � � 1
2� �E �

� 0�2�
��2� ’ �0:647 18.

For hard exchange momentum p * T, higher loop cor-
rections to the propagators and vertices in Fig. 1 represent
O�g2� corrections. However, the expression (4) for � re-
ceives an O�g� contribution from scatterings against soft
gluons, q�mD. Both the dispersion relations and the
interactions of such gluons are modified at the O�1� level;
at leading order these modifications are described by hard
thermal loops. Therefore there will be O�g� corrections to
the above calculation. But this is not the only source of
O�g� next-to-leading order (NLO) corrections.

Another source is associated with overlapping scattering
events: the total scattering rate for a hard particle is�g2T,
and is dominated by t-channel Coulombic scatterings in-

volving soft momentum transfers. These soft scatterings
have a duration of order �1=mD � 1=gT and therefore an
O�g� fraction of such scattering events overlap with each
other. This is relevant in QCD (though not in QED, see
below) because each scattering color rotates the
participants.

We need a systematic way of evaluating these NLO
effects. This is provided by a loopwise expansion for
Eq. (2). The diagrams needed at NLO are shown in
Fig. 2. The diagrammatic series is convergent in powers
of g provided one incorporates HTL corrections in propa-
gators and vertices wherever momenta are soft [9], unless a
diagram is sensitive to the magnetic scale �g2T, which
would be signaled by an infrared divergence in the evalu-
ation of a Feynman diagram. This does not occur in the
current calculation; the diagrams shown in Fig. 2 are all IR
and UV convergent, after the leading-order contribution is
subtracted off from the transverse, pole-pole contribution
of diagram (A). Since the momenta are soft, the ordering
issues for the Wilson lines are subdominant and we may
replace the two Wilson lines in Eq. (2) with an adjoint
Wilson line; all diagrams involve the group theoretic com-
bination CHCA and we may represent the NLO correction
as the coefficient C defined by

 ��
CHg4T3

18�

��
Nc�

Nf
2

��
ln

2T
mD
��

�
�
Nf ln2

2
�
NcmD

T
C
�

(6)

with O�g2� corrections. There is no O�g� NLO correction
in QED, where the (bare and HTL) vertices involved in
diagrams (A), (B), (C) do not exist and the Wilson line in
(D) is trivial.

Since Eq. (2) involves unequal time correlators we have
found it most convenient to evaluate it in the real-time
(Schwinger-Keldysh) formalism. This required an exten-
sion of the HTL formalism to the closed time path in the
Schwinger-Keldysh (r, a) basis [10], which is convenient
for treating soft physics because Bose-Einstein factors only
arise in one propagator. We work in strict Coulomb gauge.

2

FIG. 1. Leading-order contribution to heavy quark diffusion
and its correspondence to scattering processes. On the left the
double line represents the Wilson line; on the right it is the heavy
quark external states.

P

Q

R
PQ

R

(A ) (B )
Q

P P
Q

(C ) (D )

FIG. 2. Diagrams required at NLO. The double line is the
Wilson line; otherwise all propagators are soft and HTL re-
summed and all vertices include the HTL vertex. All lines
attached to the Wilson line are longitudinal.
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The measurable, Eq. (2), is gauge invariant and the HTL
expansion should respect gauge invariance, so we expect
the sum of diagrams systematically evaluated in powers of
g to produce gauge invariant results, though the results for
individual diagrams probably are not.

The effect of diagram (A) can be divided into the real
and the imaginary part of the self-energy correction. The

real part represents a correction to the Debye mass which
can actually be evaluated within the 3-D dimensionally
reduced theory [11]. 4D Coulomb gauge corresponds to 3D
Landau gauge; in this gauge the self-energy receives a
nonzero, momentum-dependent contribution when one
propagator in the self-energy is transverse and the other
is longitudinal (A0 in the 3D theory). The correction is

 

1

�p2 �m2
D�

2 !
1

�p2 �m2
D � �m

2
D�

2 in Eq: �4�; �m2
D � �4CAg2T

Z d3q

�2��3
p2 � �q 
 p�2=q2

q2
�p� q�2 �m2
D�
: (7)

The contribution to C is found by expanding �p2 �m2
D � �m

2
D�
�2 � �p2 �m2

D�
�2 ’ �2�m2

D�p
2 �m2

D�
�3 and finding

the shift to Eq. (4). Straightforward integration gives Cre�A� �
3

2� �1�
�2

16� ’ 0:771 99.
The next simplest contributions are from diagrams (C) and (D). Physically, (C) accounts for real and virtual corrections

in which the light scatterer undergoes an additional soft scattering or soft plasmon emission or absorption. Diagram (D) is
the same but for the heavy quark. In QED there is a cancellation between vertex orderings but in QCD one instead picks up
a commutator of color operators. The contributions of these two diagrams (scaling momenta bymD and scaling out powers
of T) are

 C�C� � 6�2
Z d3p

�2��3
p2

�1� p2�2

Z d�v

4�

Z d4Q

�2��4
G	

rr �Q�v	v


��v 
 �P�Q��� ��v 
 �P�Q��� 2��v 
 P�

�v 
Q�2
; (8)

 C�D� �
3

2�4

Z 1
0
p4dp

Z 1
0
q2dq

Z 1
0
d!

G00
rr �!;p� �G00

rr �0; p�

!2 G00
rr �!; q�: (9)

Here v	 � �1; v� and G	

rr is the ordering-averaged gauge field correlator, related to the retarded correlator via [12]

G	

rr �!;p� � 
2nB�!� � 1�ReG	


R �!;p� ’
2T
! ReG	


R �!;p�. These expressions can be simplified somewhat but must be
evaluated by numerical quadratures. We find [13] C�C� � �0:132 916�1� and C�D� � 0:067 526�1�.

The most involved calculation is for the imaginary contribution of the self-energy loop in diagram (A). This bears some
similarity to the calculation of the gluon damping rate by Braaten and Pisarski [14], but the ‘‘external’’ momentum P is
now spacelike. Therefore the integrals encountered are four rather than two dimensional (one must integrate over p and
�pq), and the kinematics allow for processes involving two soft plasmons on their mass shells, as well as virtual corrections
to the tree process of Fig. 1. The contribution to C can be written

 

Cim�A� � 6�
Z d3p

�2��3
p2

�1� p2�2

Z d4Q

�2��4

�
�G		0

R �Q�G

0
R �R�M	
�Q;R�M	0
0 �Q;R� � 2G

0

rr �R�V	0
0�G
		0

R �Q�M	
�Q;P�

�G		0

A �Q�M	
�Q;P�
���

1

2
V	
V	0
0G

		0
rr �Q�G

0

rr �R�
�
; (10)

where we have introduced

 M	
�Q;R� �
Z d�v

4�
v	v


�v 
Q� i���v 
 R� i��
; (11)

 V	
 � 2q0�	
 � �R� P�	�0

 � �Q� P�
�0

	 (12)

to denote objects that enter the HTL and tree vertices. The
evaluation is lengthy [13], and rather remarkably, turns out
to be separable into pole-pole, pole-cut and cut-cut con-
tributions, in analogy to what was found by Braaten and
Pisarski [14]. Two subtractions are required. First, as men-
tioned above, at large momenta the pole-pole contribution
when both gauge bosons are transverse duplicates the tree

process of Fig. 1; this must be subtracted. Further, evaluat-
ing the integrals in Eq. (4) for finite mD already incorpo-
rates an NLO correction besides what is in Eqs. (5). We
will take the leading contribution to be the result including
this NLO correction (which corresponds to CEq: �4� �

21
8� .)

After these subtractions we obtain (numerically) Cim�A� �
0:9097�1�.

Diagram (B) involves the correlator of three A0 fields
connected by an HTL 3-point function (the tree vertex
vanishes), and accounts for interference between scattering
events occurring on the light scatterer’s side and on the
heavy quark’s side. One of the A0 fields carries zero
frequency, and the contributions can be organized accord-
ing to whether the zero-frequency propagator is cut or
retarded,
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 Cre�B� � 6�2
Z d3p

�2��3
p

�1� p2�2

Z d3q

�2��3

	
M00�q;�r�

�1� q2��1� r2�
; (13)

 

Cim�B� � 12�
Z d3p

�2��3
p2

1� p2

Z d4Q

�2��4
G00
rr �R�

	
G00
R �Q�M

00�Q;p� �G00
A �Q�M

00�Q;p��

q0 : (14)

The contributionsCre�B� andCim�B� are closely analogous to
the real and imaginary parts of diagram (A), respectively.
We find [13] Cre�B� � �0:048 29�1� and Cim�B� �

�0:073 38�1�.
The ratio of the NLO correction to the LO result is

independent of the representation of the heavy quark and
is proportional to the group’s adjoint Casimir operator CA
(CA � Nc in SU�Nc� gauge theory, 0 in QED).
Numerically, we find [see Eq. (6)] C � 1:4946� CEq: �4�,
or, for 3 flavors,

 � �
16�

3
�2
sT3

�
ln

1

gs
� 0:074 28� 1:9026gs �O�g2

s�

�
:

(15)

The correction is positive, meaning faster equilibration of
heavy quarks. As shown in Fig. 3, for realistic values of the
strong coupling the correction is large—a factor of 2 al-
ready at �s � 0:03.

Our result shows that the radius of convergence of the
strict perturbative expansion for dynamical quantities is
very small. However, it may be possible to resum the series
such that it has a much wider range of convergence. We
already know of resummations which allow the incorpo-
ration of about 2=3 of the correction we have found into a

relatively simple resummed leading-order calculation.
Namely, about 1

3 of the NLO coefficient in Eq. (15) (the
part we called CEq: �4�) is incorporated by integrating
Eq. (4) numerically rather than expanding it into Eq. (5).
Another third, Cre�A�, can be approximately included into
Eq. (4) by giving the real part of the self-energy its full p
dependence rather than approximating it with its small p
limit, m2

D (though the simplest way of incorporating this
momentum dependence is not gauge invariant).

We do not know of any resummation scheme which can
simply incorporate the remaining correction, which seems
to represent nontrivial many-body physics. It would cer-
tainly be interesting to look for such a resummation
scheme. It would also be interesting to extend to NLO
the calculations of other transport coefficients such as
shear viscosity, and to extend the present calculation to
weakly coupled N � 4 Super Yang-Mills theory.
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FIG. 3. Comparison of leading and NLO results for Nf � 3
QCD as a function of coupling.
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