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It is shown that instantons in the O(3) model at finite temperature consist of fractional charge
constituents and the (topological) properties of the latter are discussed.
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Introduction.—The famous O(3) model in two dimen-
sions has various applications in condensed matter and
high energy physics. From the point of view of gauge field
theories, it is one of the few toy models that exhibits
asymptotic freedom and a dynamical mass generation.

The other main feature of the O(3) model is the exis-
tence of solitonic solutions [1]. They are stabilized by a
topological quantum number belonging to the second ho-
motopy group of the color two-sphere (because every
configuration of finite action can be compactified by in-
cluding spatial infinity).

The solitons of any topological charge are known ex-
plicitly making use of the complex structure of the
Bogomolnyi equation; see below. All these properties,
including the new findings in this Letter, find immediate
generalizations in CP(N) models.

That the soliton of unit topological charge can be pa-
rametrized by two locations [see Eq. (6)] has initiated
speculations of whether it is actually made of two constit-
uents, named ‘‘instanton quarks” [2]. In the profile of the
topological charge (or action) density, however, there is no
sign of the constituents; they rather generate one lump. On
the other hand, the measure on the moduli space of clas-
sical solutions can be written in terms of the constituent
locations [3]. Moreover, the existence of constituents is
relevant for the Wess-Zumino term, in which the 6 parame-
ter is multiplied by the value of the topological charge.
This topological term is essential for the description of
(anti)ferromagnetic spin chains and the quantum Hall ef-
fect through the O(3) model.

At this point I invoke some knowledge from gauge
theories in four dimensions: Yang-Mills (YM) instantons
at finite temperature, called calorons [4], have magnetic
monopoles as constituents, provided the holonomy is non-
trivial [5]. These calorons are obtained by two effects. One
is to squeeze instantons by compactifying the timelike
direction to the usual circle of circumference S =
1/kgT. The second ingredient is the different color orien-
tation of the instanton copies along that compact direction
(for a recent review see [6]). A similar picture applies to
doubly periodic Yang-Mills instantons [7].

The O(3) model has been investigated on the two-torus,
too [8]. On R?, fractional charge objects only exist at the
expense of singularities [9].
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In this Letter I show that large instantons in the O(3)
model at finite temperature dissociate into two constitu-
ents, provided one allows for a nontrivial transition func-
tion in the timelike direction being part of the global
symmetry of the model. The constituents are static and of
(in general different) fractional topological charge gov-
erned by the new holonomy parameter.

Model and its solitons on R>.—Conventionally, the O(3)
model is defined in terms of a three-vector ¢¢, a = 1,2, 3,
taking values on a two-sphere S in color space, ¢“¢* =
1, (the sum convention is used). Its action is just the usual
kinetic term, whereas the integer-valued topological
charge reads

1
= g fdzxew,eabc(f)“aﬂ(f)ba,,qbc e Z, M= 1, 2.
(D
It is useful to introduce a complex structure,
1 + 2
% = u(z, 7°), z=x; t ix,. ()

The zeroes and poles of u have the immediate interpreta-
tion of ¢ being on the north and south pole of S2, respec-
tively. Such a behavior is necessary for the field to have a
winding number, since it has to fully cover S2.

Configurations of minimal action in S = 47|Q| fulfill
first order “‘self-duality” equations solved by u being a
function of z (or z*) alone. The topological charge in terms
of u(z) reads

1 1 du |2
= [ &2 ) = | — 3
Q f xqb) a0 = e ez | @
Concerning the solutions, the meromorphic ansatz,
A
u(z) = : )
Z— 2

has a pole at z; and a zero at infinity, which makes it
plausible that this configuration has charge 1. Indeed, the
profile of the topological charge density

1 A2
7 (12 — zol* + A%)?

q(x) = (5)
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integrates to Q = 1. One recognizes the size A and the
location z of the instanton.

The model has a global O(3) symmetry rotating ¢ [the
topological charge Q from Eq. (1) for example is a triple
product and thus a pseudoscalar under this symmetry]. An
SO(2) subgroup of rotations of (¢!, $?) acts on u by
multiplication with a complex phase, which leaves ¢ un-
changed; see Eqgs. (2) and (3).

An analytic ansatz 1/u with the roles of pole and zero
(i.e., north and south pole on S2) interchanged gives the
same profile g(x). The function u(z) can also have both its
zero and pole at finite z, e.g., in the rational function

z2—2
”rat(Z) = — 7 (6)

This reparametrization offers the possibility of constituents
at locations z = {Z, Z}. However, the topological density
still has one lumpy; it is of the form (5) with size A = |2 —
#|/2 around the center of mass zo = (£ + %)/2.

Case of finite temperature.—Higher charge solutions are
given by a simple product ansatz ,?:1 A/(z = zoy). For a
solution in the finite temperature setting, i.e., identifying

z ~ z + i3, one would have to consider the infinite product
i A
2z —z0 — kP’

)

which is infinite. Neglecting an infinite factor and using the

product representation of the sine function, a regularized
version of (7) is

A 8

sinh[(z = 20) 2] ®)

This function changes sign under z — z + if3.
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FIG. 1 (color online).

More systematically, let u(z) be a function with simple
poles at z = zo + ikf3. Then the Mittag-Leffler theorem
fixes the singular part of u(z) uniquely, provided the resi-
dues at these points are given. For a periodic u(z) all the
residues must be the same, which gives A/{exp[(z — z) X

%”] — 1} up to an analytic part.

Utilizing the SO(2) symmetry, let u(z) be periodic up to
a phase exp(2miw), w € [0, 1]. This phase fixes the rela-
tive residues at consecutive poles and the new solution is

Aexplw(z — 20) 7]
expl(z = z0) Gl — 1’

()]

u(z; @) =

It is this solution that gives rise to instanton constituents for
large A.

This phenomenon is in agreement with the large size
regime of YM calorons. The parameter @ gives the com-
plex orientation of the residues in u(z; w) along Imz,
corresponding to the color orientations of YM instanton
copies in the Atiyah-Drinfeld-Hitchin-Manin formalism
[10], and will therefore be called holonomy parameter.
The only difference to the case of non-Abelian gauge
theories is that there the nonperiodicity of the primary
object, the gauge field A, (x), can be compensated by a
time-dependent gauge transformation, whereas in the O(3)
model this cannot be done as the gauge symmetry is global.

Constituent properties.—Vanishing parameter o (as
well as the equivalent w = 1) refers to the periodic case,
while w = 1/2 is the antiperiodic case with u(z;1/2)
agreeing with Eq. (8) up to a factor of 2. As Fig. 1 shows,
the periodic case consists of one lump of action density,
while the antiperiodic soliton dissociates into two identical
lumps, when the size parameter A is large. Moreover, these

Logarithm of the topological density of instantons with different size and holonomy parameter (plugging (9)

into (3) and cut off below e ). From left to right A = 1, 10, 100 [with locations growing like InA according to Eq. (11)]. From top to
bottom the periodic case w = 0 with one lump (the massless constituent being infinitely spread like for the Harrington-Shepard
caloron), an intermediate case, w = 1/3, and the antiperiodic case w = 1/2 with identical constituents.
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constituent lumps are almost static, i.e., Imz independent
[although u(z) is not].

The general case of holonomy parameter w reveals
lumps of “masses” (that is energy density integrated along
Rez) of w/B and @/B, @ =1 — w € [0, 1], in complete
analogy to the YM caloron constituents. Their sum multi-
plied by the Imz extension B gives Q = 1.

This can be best understood by rewriting Eq. (9) into

1
expld(z — 2) %] — exp[—w(z = 21) %]

u(z; w) = (10)

with locations

InA InA
ZzzZo+B—_- (11)
27 ®

a=w-B 27w’
For A > 1 the ordering is Rez; < Rezy < Rez,.

That these locations are really the centers of constituents
can be seen for large sizes A > 1, where Rez, > Rez,,
such that around z;, one of the terms in Eq. (10) is
exponentially suppressed leading to

exp[—@(z — z») %’T] for z = z,,

A>> 1 u(z w) = { —explw(z — Zl)%T] for z = z;.

(12)
The corresponding constituent solution
27

uconst(Z; w) = exP(“’Z ?)r (13)

gives rise to an exponentially localized profile

2
Tw

= , 14
9x) B*cosh?(wRez %’) (14)

which is static and yields Q = w. The fractional charge
finds its counterpart in the fractional covering of the com-

plex plane by u(z; w). The other constituent exp(—a')z%”

has the same profile with @ replaced by ®. Actually,
Ueonst(2, @ + m) with any integer m is consistent with the
boundary condition and gives Q = |w + m|.

In the far field limit |Rez| — oo again one of the terms in
Eq. (10) is exponentially small and by neglecting it only
the nearest constituent is visible (for Rez — oo the one at
Z1,2), in contrast to the YM case, where all constituents are
present via algebraic tails.

Topology.—For the topological description of the pos-
sible solitonic solutions I start with the usual argument that
a finite topological charge demands an Imz-independent
function u(z) asymptotically, i.e., for large |Rez|. This is
consistent with the nontrivial boundary condition, the
phase change exp(27iw) in Imz, only if the asymptotic
values of u(z) are zero or infinity, i.e., the poles ¢3 = *1
on the complex sphere [these poles are distinguished by the
choice of the SO(2) subgroup in the boundary condition].

The topological charge density of Eq. (1), the (pullback
of the) volume form, can locally be written as a curl

(exterior derivative of a one-form),

1
q(x) = EE’U’V smH&MHGVQD
(15)

4ar €urdu
¢5 = cosh, ¢, + i, = sinfe'?,

[(£1 = cos6)d, ]

where the expression in the square bracket is a regular
representation in spherical coordinates in ¢ around the
north and south pole, respectively. Consequently, I now
divide the coordinate space into regions, where ¢(x) is on
the northern and southern hemisphere, called N and S,
respectively, and use the corresponding regular expression
there.

Then Q reduces to boundary integrals, both on the pre-
image of the equator separating the hemispheres (there
cosf = 0 or equivalently |u(z)| = 1) and on the boundary
of space itself,

1 N N
= [ asltrn - (-1de
T J ¢3(x)=0
1 d =B
+— fdxl(il —cos®) 2|77 (16)
dar le X=0
The second term vanishes since ¢@(x,x, + 8) =

o(x), xy) + 27w and 6(x;, x, + B) = 6(x;, x,) (and be-
cause the assignment to the hemispheres is the same on
both boundaries). In the first term the curves are the
borders of two regions with opposite sign in Eq. (15),
endowing the curve with opposite orientations. Thus, the
topological charge Q is given as the sum of oriented
changes in the angular variable ¢ = arctan(¢,/¢;) along
the ““‘equator lines” ¢; = 0 divided by 2.

For these equator lines three types of configurations are
possible. The first one is a curve stretching from one
boundary of space to (the same x; at) the other boundary.
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FIG. 2. The distribution of the southern and northern hemi-
sphere for a large (top) and small (bottom) instanton and the
contributions to the topological charge Q from the oriented
equator lines. To get the picture for the individual constituents,
one simply cuts the upper plot vertically in the middle.
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It separates S on its left-hand side from N on its right-hand
side or vice versa. Such a line picks up a ¢ change of
*27w up to multiples of 277. Hence, these equator lines
contribute fractional topological charges w + m or —w +
n. For the definiteness of Q the integers are restricted, m =
0,n=1.

In fact, individual or well-separated constituents are
examples of this phenomenon because the equator lines
run through their centers. Figure 2 (top) depicts the situ-
ation for a large instanton, where m and n take values 0 and
1, respectively [cf. the discussion below Eq. (13)].

The second type of equator line returns to the same
boundary. Because of the periodicity of ¢3, there will be
another equator line starting and ending at the same x; at
the other boundary. It is easy to see that the sum of ¢
changes on these two lines is an integer. A small instanton
provides an example of this type of equator line with
contribution 1; see Fig. 2(bottom).

Finally, a closed curve encircling N or S is the third
possibility for an equator line. It does not feel the boundary
condition and therefore is well known, e.g., from the Wu-
Yang construction of the Dirac monopole. The contribution
of such an equator line is again an integer, the winding
number of ¢ [around a zero or pole of u(z)].

The essence of the topological considerations is that,
whenever the preimage of one hemisphere is an “‘island”
in the preimage of the other hemisphere, there is an integer
contribution to the topological charge (the last two types).
The fractional part of Q emerges from equator lines be-
tween the boundaries separating different hemispheres [for
like hemispheres the contributions in the first line of
Eq. (16) have the same sign and cancel].

This has the interesting consequence that the fractional
charge cannot accumulate—to say *2w—without being
accompanied by a contribution * w in between (including
integers m and n) and that the fraction of the topological
charge Q is determined purely by the asymptotics |x;| —
oo, Different poles there give w or —w (examples are the
individual constituents discussed in the previous section),
whereas same asymptotic poles give no fractional charge
(like for the instantons, see Fig. 2).

Of course, these calculations cannot determine the local
distribution of the topological charge density g(x); in the
examples, however, the latter turns out to be concentrated
around the equator lines.

Conclusions.—At finite temperature, instantons in the
O(3) model reveal fractional charge constituents. These
novel solutions have been given by simple analytic expres-
sion using complex functions. In general, the topological
charge consists of a fractional part =w, where w is the
holonomy parameter in the boundary conditions governing
the masses of the static constituents, plus possible integers
from undissociated instantons being time-dependent.

The size parameter of large instantons transmutes into
the distance of its constituents, which themselves have a
size proportional to 3. This also resolves the puzzle of why
the instanton quark locations—even if they are locations of
constituents in the zero temperature limit (which can be
achieved)—do not show up as individual topological
lumps: for B — oo the constituents become large and
inevitably overlap. Put differently, in the zero temperature
case, there is no other scale besides the distance of the
instanton quarks that could localize the latter.

The finite temperature case might be viewed as the limit
of elongated space-time tori (with nontrivial boundary
conditions), where the smaller extension governs the size
of the constituents, which can separate in the direction of
the larger extension.

Many of these features are similar to those of Yang-Mills
calorons. It would be interesting to investigate how far this
analogy goes, in particular, since CP(N) models can be
parametrized by virtue of a gauge field. From the corre-
sponding Yang-Mills phenomenon, fermions are expected
to localize to the constituents in the background and to hop
with their boundary conditions.

The constituent picture should also be of relevance for
understanding the physical mechanisms of the O(3) model
at finite temperature. To this end, quantum effects around
these configurations need to be addressed. The latter might
also lift the degeneracy in w, e.g., preferring the symmetric
case of charges 1/2 [and 1/N for CP(N — 1)].
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