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We use quantum discord to characterize the correlations present in the model called deterministic
quantum computation with one quantum bit (DQC1), introduced by Knill and Laflamme [Phys. Rev. Lett.
81, 5672 (1998)]. The model involves a collection of qubits in the completely mixed state coupled to a
single control qubit that has nonzero purity. The initial state, operations, and measurements in the model
all point to a natural bipartite split between the control qubit and the mixed ones. Although there is no
entanglement between these two parts, we show that the quantum discord across this split is nonzero for
typical instances of the DQC1 ciruit. Nonzero values of discord indicate the presence of nonclassical
correlations. We propose quantum discord as figure of merit for characterizing the resources present in this
computational model.
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Characterizing and quantifying the information-
processing capabilities offered by quantum phenomena
like entanglement, superposition, and interference is one
of the primary objectives of quantum-information theory.
In spite of substantial progress [1–3], the precise role of
entanglement in quantum information processing remains
an open question [4–8]. It is quite well established that
entanglement is essential for certain kinds of quantum-
information tasks like teleportation and superdense coding.
In these cases, it is also known that the quantum enhance-
ment must come from entanglement spread over large parts
of the system. It is not known, however, if all information-
processing tasks that can be done more efficiently with a
quantum system than with a comparable classical system
require entanglement as a resource.

Quantum algorithms for certain computational tasks that
outperform their best known classical counterparts are
known to exist even though it has not been shown that
quantum computation is in general more powerful than
classical computation. For pure-state quantum computa-
tion, it is known that unbounded growth of entanglement
with the size of the system is necessary for obtaining an
exponential speed up over classical computation [2]. NMR
quantum-information processors using highly mixed, pseu-
dopure states, lying within the separable ball around the
completely mixed state [5,7], have performed quantum
algorithms for small numbers of qubits [9,10]. Moreover,
there exist models of mixed-state quantum computation
[11] that provide exponential speed up over the best known
classical algorithms and yet have a bounded amount of
entanglement and, in some regimes, have positive partial
transpose [12]. Here we explore an alternate way of char-
acterizing the quantum nature of the correlations in such
systems.

Quantum discord, introduced by Ollivier and Zurek [13],
captures the nonclassical correlations, including but not
limited to entanglement, that can exist between parts of a
quantum system. One way of studying the quantum nature
of a computational process is to investigate the nonclass-

ical correlations in the quantum state at various stages
during the computation. We investigate the effectiveness
of discord in characterizing the performance of the model
of quantum information processing introduced by Knill
and Laflamme in [11], which is often referred to as the
power of one qubit, or deterministic quantum computation
with one quantum bit (DQC1). In this model, information
processing is performed with a collection of qubits in the
completely mixed state coupled to a single control qubit
that has some nonzero purity. Such a device can per-
form efficiently certain computational tasks for which
there is no known efficient method using classical infor-
mation processors.

We start with a discussion of quantum discord, its defi-
nition and its relevance in quantum-information theory.
Consider the following two-qubit separable state

 

� � 1
4�j�ih�j � j0ih0j � j�ih�j � j1ih1j

� j0ih0j � j�ih�j � j1ih1j � j�ih�j�; (1)

in which four nonorthogonal states of the first qubit are
correlated with four nonorthogonal states of the second
qubit. Such correlations cannot exist in any classical state
of two bits. The extra correlations the quantum state can
contain compared to an equivalent classical system with
two bits could reasonably be called quantum correlations.
Entanglement is a special kind of quantum correlation, but
not the only kind. In other words, separable quantum states
can have correlations that cannot be captured by a proba-
bility distribution defined over the states of an equivalent
classical system.

Quantum discord attempts to quantify all quantum cor-
relations including entanglement. It must be emphasized
here that the discord supplements the measures of entan-
glement that can be defined on the system of interest. It
aims to capture all the nonclassical correlations present in a
system, those that can be identified as entanglement and
then some more.
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The information-theoretic measure of correlations be-
tween two systems S and M is the mutual information,
I�S:M� � H�S� �H�M� �H�S;M�. If M and S are clas-
sical systems whose state is described by a probability
distribution p�S;M�, then H��� denotes the Shannon en-
tropy, H�p� � �

P
jpj logpj, where p is a probability vec-

tor. If M and S are quantum systems described by a
combined density matrix �SM, then H��� stands for the
corresponding von Neumann entropy, H��� �
�Tr�� log��.

For classical probability distributions, Bayes’s rule leads
to an equivalent expression for the mutual information,
I�S:M� � H�S� �H�SjM�, where the conditional entropy
H�SjM� is an average of Shannon entropies for S, condi-
tioned on the alternatives for M. For quantum systems, we
can regard this form for I�S:M� as defining a conditional
entropy, but it is not an average of von Neumann entropies
and is not necessarily nonnegative [14].

Another way of generalizing the classical conditional
entropy to the quantum case is to recognize that classically
H�SjM� quantifies the ignorance about the system S that
remains if we make measurements to determine M. When
M is a quantum system, the amount of information we can
extract about it depends on the choice of measurement. If
we restrict to projective measurements described by a
complete set of orthogonal projectors, f�jg, corresponding
to outcomes j, then the state of S after a measurement is
given by

 �Sjj�TrM��j�SM�j�=pj; pj�TrS;M��SM�j�: (2)

A quantum analogue of the conditional entropy can then be
defined as ~Hf�jg

�SjM� �
P
jpjH��Sjj� 	 0. Since �S �P

jpj�Sjj, the concavity of von Neumann entropy implies
that H�S� 	 ~Hf�jg

�SjM�. We can now define an alternative
quantum version of the mutual information,

 J f�jg
�S:M� � H�S� � ~Hf�jg

�SjM� 	 0: (3)

Performing projective measurements onto a complete set
of orthogonal states of M effectively removes all nonclass-
ical correlations between S and M. In the post-
measurement state, mutually orthogonal states of M are
correlated with at most as many states of S. It is easy to see
that these sorts of correlations can be present in an equiva-
lent classical system.

The value of J f�jg
�S:M� in Eq. (3) depends on the

choice of f�jg. We want J f�jg
�S:M� to quantify all the

classical correlations in �SM, so we maximize J f�jg
�S:M�

over all f�jg and define a measurement-independent mu-
tual information J �S:M� � H�S� � ~H�SjM� 	 0, where
~H�SjM� � minf�jg

P
j pjH��Sjj� is a measurement-

independent conditional information. Henderson and
Vedral [15] investigated how ~H�SjM� quantifies classical
correlations. The quantum discord is then defined as

 D �S;M��I�S:M��J �S:M�� ~H�SjM��H�SjM�: (4)

The discord is nonnegative and is zero for states with only
classical correlations [13,15]. Thus a nonzero value of
D�S;M� indicates the presence of nonclassical correla-
tions [13]. The discord is bounded above by the marginal
entropy H�M� [16]. The discord of the state (1) is 3

4 


log4
3 � 0:311.

When the joint state �SM is pure, H�S;M� and ~H�SjM�
are zero, H�S� � H�M� � �H�SjM�, and the discord is
equal to H�M�, which is a measure of entanglement for
bipartite pure states. In other words, for pure states all
nonclassical correlations characterized by quantum discord
can be identified as entanglement as measured by the
marginal entropy.

So far we have seen how discord can be used to charac-
terize the nonclassical nature of the correlations in quan-
tum states. We now apply these ideas to the DQC1 or
power-of-one-qubit model [11] of mixed-state quantum
computation, which accomplishes the task of evaluating
the normalized trace of a unitary matrix efficiently. The
quantum circuit corresponding to this model has a collec-
tion of n qubits in the completely mixed state, In=2n,
coupled to a single pure control qubit. A generalized
version of this quantum circuit, with the control qubit
having subunity polarization, is shown below:

This circuit evaluates the normalized trace of Un, � �
Tr�Un�=2n, with a polynomial overhead going as 1=�2.

The problem of evaluating � is believed to be hard
classically. Quantum mechanically, the circuit provides
an estimate of � up to a constant accuracy in a number of
trials that does not scale exponentially with n. It does so by
making X and Y measurements on the top qubit. The
averages of the obtained binary values provide estimates
for �R � Re��� and �I � Im���. The top qubit is com-
pletely separable from the bottom mixed qubits at all times.
The final state has vanishingly small entanglement, as
measured by the negativity [12] across any split that groups
the top qubit with some of the mixed qubits. Nonetheless,
there is evidence that the quantum computation performed
by this model cannot be simulated efficiently using classi-
cal computation [8].

The DQC1 circuit transforms the highly-mixed initial
state �0 � j0ih0j � In=2n into the final state �n�1,
 

�n�1 �
1

2n�1 �j0ih0j � In � j1ih1j � In � �j0ih1j �U
y
n

� �j1ih0j �Un�: (5)

Within this model the only place to look for nonclassical
correlations is in this state.

Everything about the DQC1 setup, including the mea-
surements on the control qubit, suggests a bipartite split
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between the control qubit M and the mixed qubits S.
Relative to this split, we turn to computing the quantum
discord for the state �SM � �n�1. The joint state �n�1 has
eigenvalue spectrum

 � ��n�1� �
1

2n�1 �1� �; � � � ; 1� �|��������������{z��������������}
2ntimes

; 1� �; � � � ; 1� �|��������������{z��������������}
2ntimes

�;

which gives a joint entropy H�S;M� � n�H2��1�
��=2�, where H2��� is the binary Shannon entropy. The
marginal density matrix for the control qubit at the end of
the computation is

 �M �
1

2

1 ���

�� 1

� �
; (6)

which has eigenvalues �1� �j�j�=2 and entropy H�M� �
H2��1� �j�j�=2�.

The evaluation of the quantum conditional entropy in-
volves a minimization over all possible one-qubit projec-
tive measurements. The projectors are given by
�� �

1
2 �I1 � a � ��, with a � a � a2

1 � a
2
2 � a

2
3 � 1.

The post-measurement states are

 �Sj� �
1

p�2n�1

�
In � �

a1 � ia2

2
Un � �

a1 � ia2

2
Uyn

�
;

(7)

occurring with outcome probabilities p� � 1�
��a1�R � a2�I��=2. The post-measurement states are in-
dependent of a3, so without loss of generality, let a3 � 0,
a1 � cos�, and a2 � sin�. The corresponding post-
measurement states are

 �Sj� �
1

p�2n�1

�
In � �

e�i�Un � ei�U
y
n

2

�
: (8)

To find the discord of the state at the end of the compu-
tation, we need the spectrum of �Sj� so that we can
compute H��Sj��. The eigenvalues of any unitary operator
Un are phases of the form ei�k , so we have

 �k

�
e�i�Un� e

i�Uyn
2

�
� cos��k���; k� 1; � � � ;2n;

(9)

and

 �k��Sj�� �
1

2n
1� � cos��k ���

1� ���R cos�� �I sin��
� qk�: (10)

We also have �R � 2�n
P
k cos�k and �I � 2�n

P
k sin�k.

All this gives H��Sj�� � H�q�� and thus
 

~H�� � p�H��Sj�� � p�H��Sj��

�
1

2
H�q�� �H�q���

�
�
2
��R cos�� �I sin��H�q�� �H�q���: (11)

We now use the fact that we are interested in the behav-
ior of the quantum discord of the DQC1 state for a typical

unitary. By typical, we mean a unitary chosen randomly
according to the (left and right invariant) Haar measure on
U�2n�. For such a unitary, it is known that the phases �k are
almost uniformly distributed on the unit circle with large
probability [17]. Thus for typical unitaries

P
ke
i�k is close

to zero. Hence both �R and �I are small, and we can ignore
the second term on the right-hand side in Eq. (11). In
addition, the phases �k can be taken to be placed at (with
large probability) the 2nth roots of unity, i.e., �k �
2�k=2n. It follows that the spectra �k��Sj�� are indepen-
dent of �. Hence the entropies we are interested in com-
puting are also independent of �, and we can set � to zero
without loss of generality. This choice for� corresponds to
measuring the pure qubit M along X. The X measurement
gives the real part of the normalized trace of Un, and it is
one of the two measurements discussed in the original
proposal by Knill and Laflamme. Setting � � �=2 yields
the other measurement, along Y, which gives the imaginary
part of the normalized trace of Un.

In the limit of large n, we can simplify Eq. (11) as
follows:
 

~H �
1

2
H�q�� �H�q���

� �
1

2n�1

X2n
k�1

�
�1� � cos�k� log

�
1� � cos�k

2n

�

� �1� � cos�k� log
�
1� � cos�k

2n

��

� n�
1

2n�1

X2n
k�1

�
log�1� �2cos2�k�

� � cos�k log
�

1� � cos�k
1� � cos�k

��
: (12)

Furthermore, when n is large, we can replace the sum in the
above equation with an integral to obtain

 

~H � n�
1

4�

�Z 2�

0
log�1� �2cos2x�dx

� �
Z 2�

0
cosx log

�
1� � cosx
1� � cosx

�
dx
�

� n� 1� log�1�
���������������
1� �2

p
� � �1�

���������������
1� �2

p
� loge:

(13)

Note that when the sums are replaced by integrals,
H�q�� �H�q�� � 0, providing further justification for
ignoring the second term in Eq. (11).

When j�j is small, H�M� ’ 1, and the quantum discord
for the DQC1 state is then given by the simple expression
 

DDQC1 � 2�H2

�
1� �

2

�
� log�1�

���������������
1� �2

p
�

� �1�
���������������
1� �2

p
� loge: (14)

Note that the above expression for the discord is indepen-
dent of n for large n. Figure 1 compares the discord from
Eq. (14) with the average discord in a DQC1 circuit having
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five qubits in the mixed state (n � 5) coupled to a control
qubit with purity �. The average is taken over 500 instan-
ces of pseudorandom unitary matrices, generated using the
efficient algorithm presented in [18]. The convergence of
this ensemble to the Haar measure on the unitary group is
shown in [19]. We see that in spite of the approximations
made in obtaining Eq. (14), the analytic expression pro-
vides a very good estimate of the discord even when n is as
low as five.

There is no entanglement between the control qubit and
the mixed qubits in the DQC1 circuit at any point in the
computation, yet there are nonclassical correlations, as
measured by the discord, between the two parts at the
end of the computation for any �> 0. Other bipartite
splittings of �n�1 can exhibit entanglement, but it was
shown in [12] that the partial transpose criterion failed to
detect entanglement in �n�1 for � � 1=2. In this domain,
several other tests for entanglement, including the first
level of the scheme of Doherty et al. [20], which is based
on semidefinite programming, also failed to detect entan-
glement. The above expression is thus the first signature of
nonclassical correlations in the DQC1 circuit for � � 1=2.

In conclusion, we calculated the discord in the DQC1
circuit and showed that nonclassical correlations are
present in the state at the end of the computation even if
there is no detectable entanglement. Thus for some pur-
poses, quantum discord might be a better figure of merit for
characterizing the quantum resources available to a
quantum-information processor. We present evidence of
the presence of nonclassical correlations in the DQC1
circuit when � � 1=2. For qubits quantum discord is
known to be a true measure of nonclassical correlations

[21]. This suggests that nonclassical correlations other than
entanglement, as quantified by the discord, might explain
the (sometimes exponential) speed-up in the DQC1 circuit
and perhaps the speed up in other quantum computational
circuits. For pure states, discord becomes a measure of
entanglement. Therefore, using discord to connect quan-
tum resources to the advantages offered by quantum-
information processors has the additional advantage that
it works well for both pure- and mixed-state quantum
computation.
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FIG. 1 (color online). The dashed (red) line shows the average
discord in a DQC1 circuit with five qubits in the mixed state
(n � 5) coupled to a qubit with purity �. The average is taken
over 500 instances of pseudorandom unitary matrices. The
discord is shown as a function of the purity of the control qubit.
The solid (green) line shows the analytical expression in
Eq. (14), which grows monotonically from 0 at � � 0 (com-
pletely mixed control qubit) to 2� loge � 0:5573 at � � 1
(pure control qubit). These values of discord should be compared
with a maximum possible discord of 1 when M is a single qubit.
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