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The generalized n-qubit Greenberger-Horne-Zeilinger (GHZ) states and their local unitary equivalents
are the only states of n qubits that are not uniquely determined among pure states by their reduced density
matrices of n� 1 qubits. Thus, among pure states, the generalized GHZ states are the only ones
containing information at the n-party level. We point out a connection between local unitary stabilizer
subgroups and the property of being determined by reduced density matrices.
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Quantifying and characterizing multiparty quantum en-
tanglement is a fundamental problem in the field of quan-
tum information. Roughly speaking, one expects the states
that are ‘‘most entangled’’ to be the most valuable resour-
ces for carrying out quantum information processing tasks
such as quantum communication and quantum teleporta-
tion, and to give the most striking philosophical implica-
tions in terms of the rejection of local hidden variable
theories [1].

Although no single definition of ‘‘most entangled’’
seems possible, since we know that multiparty entangle-
ment occurs in many types that admit at best a partial order
[2], it is still worthwhile to consider properties that carry
some of the spirit of most entangled.

One such property is the failure of a state to be deter-
mined by its reduced density matrices. As reduced density
matrices contain correlation information pertaining to
fewer than the full number of parties in the system, states
exhibiting entanglement involving all parties must possess
information beyond that contained in their reduced density
matrices. Linden, Popescu, and Wootters put forward this
suggestion in [3,4] and proved the surprising result that
almost all n-party pure states are determined by their
reduced density matrices. In other words, the set of
n-party pure states undetermined by their reduced density
matrices is a set of measure zero. In [5], Diósi gave a
constructive method that succeeds in almost all cases for
determining a 3-qubit pure state from its reduced density
matrices. Nevertheless, the question of precisely which
states are determined by their reduced density matrices
remained open.

In this Letter, we show that the only n-qubit states that
are undetermined among pure states by their reduced den-
sity matrices are the generalized n-qubit Greenberger-
Horne-Zeilinger (GHZ) states,

 �j00 � � � 0i � �j11 � � � 1i; �; � � 0

and their local unitary (LU) equivalents. This means that,
among pure states, the generalized GHZ states are the only
ones containing information at the n-party level. For the

case n � 3, this result was reported previously in [3]. Part
of our argument employs the methods of [5] in an essential
way.

Let Dn be the set of n-qubit density matrices. If � 2 Dn
is an n-qubit density matrix, and j 2 f1; . . . ; ng is a qubit
label, we may form an �n� 1�-qubit reduced density ma-
trix ��j� � trj� by taking the partial trace of � over qubit j.
Let

 PTr : Dn ! Dn
n�1

be the map � � ���1�; . . . ; ��n�� that associates to � its n
tuple of �n� 1�-qubit reduced density matrices. The map
PTr is neither injective (one-to-one) nor surjective (onto).
Its failure to be surjective means that there are n tuples of
�n� 1�-qubit density matrices that cannot be produced
from any n-qubit density matrix by the partial trace. The
question of whether a collection of �n� 1�-qubit reduced
density matrices could have come from an n-qubit density
matrix by the partial trace is the subject of recent and
ongoing investigations [6,7]. The failure of PTr to be
injective means that multiple n-qubit states can have the
same reduced density matrices. States �1 � �2 with
PTr��1� � PTr��2� require more information for their de-
termination than is contained in their �n� 1�-qubit re-
duced density matrices.

Let

 Pn � f� 2 Dnj�
2 � �g

be the set of pure n-qubit states. If we are interested
primarily in pure states, we can restrict the partial trace
map to pure n-qubit states.

 ptr � PTrjPn : Pn ! Dn
n�1:

Given a pure state  with j ih j 2 Pn, the set
ptr�1�ptr� �� contains all pure states with the same reduced
density matrices as  . [We abbreviate ptr� � � ptr�j i	
h j�.]

We define a state  to be determined among pure states
if ptr�1�ptr� �� contains only j ih j, and undetermined
among pure states if ptr�1�ptr� �� contains more than
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one state. Similarly, we define a state � 2 Dn to be deter-
mined among arbitrary states if PTr�1�PTr���� contains
only �, and undetermined among arbitrary states if
PTr�1�PTr���� contains more than one state.

The surprising result of Linden and Wootters [4] is that
almost all n-qubit pure states are determined among arbi-
trary states.

Nevertheless, there are pure states that are undetermined
among pure states (and consequently undetermined among
arbitrary states). For example, consider the one-parameter
family of n-qubit states

 j�i �
1���
2
p j00 � � � 0i �

����
2
p j11 � � � 1i;

where � is a complex number with magnitude 1. If �1 �

�2, then j�1i and j�2i are different states with different
density matrices j�1ih�1j � j�2ih�2j, yet they share the
same reduced density matrices; that is, ptr�j�1i	
h�1j� � ptr�j�2ih�2j�.

We see that almost all pure n-qubit states are determined
among pure states, yet n-qubit GHZ states are undeter-
mined among pure states. The question then becomes,
precisely which states  are undetermined among pure
states?

Main result.—An n-qubit state  is undetermined
among pure states if and only if  is LU equivalent to a
generalized n-qubit GHZ state.

Proof.—Let  be an n-qubit pure state.
Suppose that  is LU equivalent to a generalized n-qubit

GHZ state, so we have

 Uj i � �j00 � � � 0i � �j11 � � � 1i;

where U is a local unitary transformation. Define Uj 0i �
�j00 � � � 0i � �j11 � � � 1i. Then j ih j � j 0ih 0j, since
�� � 0, but ptr� � � ptr� 0�. Hence,  is undetermined
among pure states.

Conversely, suppose that j i is undetermined among
pure states. Then there is an n-qubit state vector j 0i �

ei�j i that has the same reduced density matrices as j i.
Claim: If j i and j 0i have the same reduced density

matrices, then for each qubit j 2 f1; . . . ; ng, there is a one-
qubit local unitary transformation Lj such that j 0i �
Ljj i.

To prove this, let j 2 f1; . . . ; ng be a qubit label. Let �j
denote the one-qubit reduced density matrix of j i for
qubit j. We write �j as a spectral decomposition,

 �j �
X1

ij�0

p
ij
j jijihijj;

for some orthonormal basis jiji, where p0
j and p1

j are the
eigenvalues of �j. If p0

j � p1
j , then the orthonormal basis

jiji is uniquely determined up to a phase. If p0
j � p1

j , then
any one-qubit orthonormal basis can be used.

The �n� 1�-qubit reduced density matrix

 ��j� � trjj ih j;

obtained by taking the partial trace of j ih j over qubit j,
has the same nonzero eigenvalues as �j,

 ��j� �
X1

ij�0

p
ij
j jij; �j�ihij; �j�j:

If p0
j � p1

j , then the �n� 1�-qubit eigenvectors j0; �j�i
and j1; �j�i are unique up to a phase. If p0

j � p1
j , then

the eigenvectors of ��j� with eigenvalue p0
j � p1

j � 1=2

constitute a two-dimensional subspace of the
2n�1-dimensional vector space of �n� 1�-qubit vectors,
and any orthonormal pair of vectors in this subspace may
be chosen as a basis.

We choose the one-qubit orthonormal basis jiji and the
�n� 1�-qubit orthonormal basis jij; �j�i so that j i can be
written

 j i �
������
p0
j

q
j0i 
j j0; �j�i �

������
p1
j

q
j1i 
j j1; �j�i;

where 
j is the tensor product that inserts a one-qubit ket
just before the jth factor in the �n� 1�-qubit ket jij; �j�i.

Now j 0i can be regarded as the state of a bipartite
system composed of qubit j and all qubits but j, and it
has a Schmidt decomposition with respect to those sub-
systems,

 j 0i �
�����
q0
j

q
j00i 
j j0

0; �j�i �
�����
q1
j

q
j10i 
j j1

0; �j�i;

where j00i; j10i are orthonormal one-qubit vectors and
j00; �j�i; j10; �j�i are orthonormal �n� 1�-qubit vectors.
Taking the partial trace over qubit j, we have

 tr jj 0ih 0j � q0
j j0
0; �j�ih00; �j�j � q1

j j1
0; �j�ih10; �j�j:

Since this must be equal to ��j�, it must have the eigenval-
ues of ��j�, q0

j � p0
j , and q1

j � p1
j . We consider two cases,

depending on whether ��j� has distinct eigenvalues or not.
Let us treat first the case of distinct eigenvalues, p0

j � p1
j .

In this case, the eigenvector j00; �j�i can be off by at most a
phase from the eigenvector j0; �j�i, and similarly for
j10; �j�i. The same argument applied to the one-qubit re-
duced density matrix �j shows that j00i can be off by at
most a phase from j0i, and similarly for j10i. In this case,
then, we can write

 j 0i �
������
p0
j

q
�Ljj0i� 
j j0; �j�i �

������
p1
j

q
�Ljj1i� 
j j1; �j�i;

(1)

with Lj a 2	 2 diagonal unitary matrix.
Let us treat next the case of repeated eigenvalues, p0

j �

p1
j . In this case, the eigenvectors j00; �j�i and j10; �j�i must

merely span the same two-dimensional complex space that
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is spanned by j0; �j�i and j1; �j�i. In this case, the primed
eigenvectors must be related to the unprimed eigenvectors
by a two-dimensional unitary transformation,

 j00; �j�i � u00j0; �j�i � u01j1; �j�i

j10; �j�i � u10j0; �j�i � u11j1; �j�i

with

 

u00 u01

u10 u11

� �
2 U�2�:

The same argument applied to the one-qubit reduced den-
sity matrix �j shows that there must be some 2	 2 unitary
matrix vlm with

 j00i � v00j0i � v01j1i j10i � v10j0i � v11j1i:

In this case, then, we can write Eq. (1) with Lj the 2	 2
unitary matrix equal to the product of the transpose of vlm
with ulm. (We have abused notation by using the symbol Lj
to represent both the 2	 2 unitary matrix and also the local
unitary transformation on n-qubit state vectors

 I 
 � � � 
 I 
 Lj 
 I 
 � � � 
 I;

with the 2	 2 matrix Lj in the jth slot of this tensor
product, and one-qubit (2	 2) identity operators in all
other slots.) This completes the proof of the Claim.

For each pair of qubit labels j, k, we have

 j i � L�1
k Ljj i:

Next, spectrally decompose each Lj with unitary matrices
Uj so that

 Dj � UjLjU
�1
j

are diagonal. We have

 D�1
k DjU1 � � �Unj i � U1 � � �UnU�1

k D�1
k UkU�1

j DjUjj i

� U1 � � �Unj i:

Using the multi-index I � �i1i2 � � � in�, where each ij is
zero or 1, and the basis

 jIi � ji1i2 � � � ini � ji1i 
 ji2i 
 � � � 
 jini;

expand

 U1 � � �Unj i �
X
I

cIjIi

and write

 Dj � ei�j
ei�j 0

0 e�i�j

� �
;

where ei�j � e�i�j , since j 0i is a different state from j i.
Now we have

 cI � cI expfi��j � �k � ��1�ij�j � ��1�ik�k�g

for all multi-indices I and all j, k 2 f1; . . . ; ng. We see that
for each multi-index I, either cI � 0 or

 expfi��j � �k � ��1�ij�j � ��1�ik�k�g � 1

for all j, k 2 f1; . . . ; ng. Let J be a multi-index with cJ �

0. If I is any multi-index that agrees with J in at least one
entry (say the jth qubit entry), and disagrees with J in at
least one entry (say the kth qubit entry), then cI � 0. We
conclude that cJ and c �J, where �J is the multi-index con-
sisting of the complements of each of the n bits in multi-
index J, are the only nonzero coefficients in U1 � � �Unj i.
Consequently, j i is LU equivalent to a generalized
n-qubit GHZ state. �

Much of this argument carries over to the more general
situation of a system of n parties in which party j has
dimension dj (party j is a qubit if and only if dj � 2). In
particular, the Claim carries over. Suppose that j i and j 0i
are states of a system of n parties in which party j has
dimension dj. If j i and j 0i have the same reduced
density matrices, then for each party j 2 f1; . . . ; ng, there
is a one-party local unitary transformation Lj such that
j 0i � Ljj i. The second part of the argument is compli-
cated by the possibility of repeated eigenvalues in the
transformations Dj. We leave this as a question for future
work.

It is worthwhile to point out the significance of stabilizer
subgroups of the local unitary group in this work. The local
unitary group for n-qubit density matrices is the groupG �
SU�2�n, consisting of a special unitary transformation on
each qubit. Each (pure or mixed) state � has a stabilizer
subgroup I� consisting of elements of G that leave � fixed
under the action g�g�1 for g 2 G. We have seen that a
state that is undetermined among pure states has a special
type of enlarged stabilizer subgroup.

There are two alternative formulations of the main result
that may suggest promising avenues for the classification
of entanglement types. One can precisely characterize the
pure n-qubit states that are undetermined among pure
states in terms of the stabilizer subalgebra of the state,
that is the Lie algebra of the stabilizer subgroup of the
state. It is shown in [8] that the generalized n-qubit GHZ
state has (for n � 3) stabilizer subalgebra

 K� �

(Xn
j�1

itjZj

���������
Xn
j�1

tj � 0

)
;

where Zj is the Pauli matrix �z applied to qubit j. States of
n qubits undetermined among pure states are precisely
those which are LU equivalent to states with this
subalgebra.

A second alternative formulation of the main result is in
terms of the dimension of the stabilizer subgroup. For n �
3 and n � 5, an n-qubit state is undetermined among pure
states if and only if it is not a product state and its stabilizer
subgroup has dimension n� 1 [9].
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We have shown that all n-qubit states other than gener-
alized n-qubit GHZ states and their LU equivalents are
completely determined by their reduced density matrices.
Is it necessary to specify all of the reduced density matri-
ces? Which states are undetermined by specifying only
n� 1 (rather than all n) of the �n� 1�-qubit reduced
density matrices? Is it a larger set than the generalized
GHZs? The answer is yes, and stabilizers can help us
understand this. For example, the state

 j�i �
1���
3
p �j0000i � j0001i � j1111i�

is undetermined by its 3-qubit reduced density matrices
obtained by taking the partial trace over qubit 1, the partial
trace over qubit 2, and the partial trace over qubit 3. It is not
LU equivalent to a generalized 4-qubit GHZ state (it has a
different stabilizer subalgebra structure, and a stabilizer
subalgebra structure is an LU invariant). Note that Z1j�i �
Z2j�i � Z3j�i � ei�j�i. The state Z1j�i has the same
3-qubit reduced density matrices as j�i when taking the
partial trace over qubit 1, 2, or 3. These two states have a
different 3-qubit reduced density matrix when taking the
partial trace over qubit 4.

A pure state’s LU-equivalence class is often considered
to contain all of the information about the entanglement of
the state. An interesting question is, are there n-qubit pure
states with entanglement information that is not contained
in their reduced density matrices? We might interpret this
question as equivalent to the question, are there n-qubit
pure states for which the LU-equivalence class of the state
is undetermined by its reduced density matrices? The
answer to this question is no. Every n-qubit pure state
can be determined (among pure states) up to a local unitary
transformation by its reduced density matrices. This can be

seen directly from the Claim at the beginning of our proof.
Two pure states that have the same reduced density matri-
ces must be LU equivalent.

We have not answered the question of which n-qubit
pure states are undetermined among arbitrary states by
their reduced density matrices. The set of n-qubit states
undetermined among arbitrary states must contain the
generalized GHZ states, but it could be strictly larger
than the set that is undetermined among pure states. This
remains an open question.
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