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The quantum coherence of a Bose-Einstein condensate is studied using the concept of quantum fidelity
(Loschmidt echo). The condensate is confined in an elongated anharmonic trap and subjected to a small
random potential such as that created by a laser speckle. Numerical experiments show that the quantum
fidelity stays constant until a critical time, after which it drops abruptly over a single trap oscillation
period. The critical time depends logarithmically on the number of condensed atoms and on the
perturbation amplitude. This behavior may be observable by measuring the interference fringes of two
condensates evolving in slightly different potentials.
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Introduction.—Ultracold atom gases have been at the
center of intensive investigations since the first realization
of an atomic Bose-Einstein condensate (BEC) in the mid-
1990s. Applications of BECs include the possibility of
revisiting standard problems of condensed-matter physics
[1] by making use of periodic optical lattices that mimic
the ionic lattice in solid-state systems. More recently,
BECs have been used to study quantum transport in dis-
ordered systems (another long-standing problem in
condensed-matter physics) by using a laser speckle to
create a disordered potential. For instance, it was shown
that the free expansion of a BEC is restrained, or even
completely suppressed, in the presence of a disordered
potential [2,3] (see also [4] for a theoretical analysis), an
effect akin to Anderson localization in solids [5].

These problems are often approached by studying the
interference pattern of two or more BECs that are released
from the optical trap, expand freely, and eventually interact
with each other [6–9]. Experiments show high-contrast
matter-wave interference fringes, thus revealing the coher-
ent nature of Bose-Einstein condensates. Surprisingly, re-
cent experiments have shown high-contrast fringes even
for well separated BECs, whose phases are totally uncor-
related [10].

Because the interference pattern depends on the phases
of the condensates, the fringes should be sensitive to per-
turbations that strongly affect the phase, but weakly affect
the motion. Therefore, when two condensates are subjected
to a random potential (such as that generated by a laser
speckle [11,12] ) before interfering, we expect a reduction
in the contrast of the interference fringes, which should
depend both on the amplitude of the random potential and
on the time during which it has been in contact with the
condensates. The purpose of this Letter is to propose a
theoretical procedure to quantify this loss of coherence and
to suggest a possible experimental realization.

In order to estimate the coherence and stability of a
quantum system [13], one can compare the evolution of
the same initial condition in two slightly different
Hamiltonians, H1 � H0 � �H1 and H2 � H0 � �H2,

where H0 is the unperturbed Hamiltonian, and �H1;2 are
small perturbations characterized by the same amplitude,
same wavelength spectrum, but different phases. The quan-
tum fidelity at time t is then defined as the square of the
scalar product of the wave functions evolving with H1 and
H2, respectively: F�t� � jh H1

�t�j H2
�t�ij2. This procedure

is sometimes referred to as the ‘‘Loschmidt echo,’’ as it is
equivalent to evolving the system forward in time with H1,
then backward with H2, and using the fidelity to check the
accuracy of the time reversal.

Virtually all theoretical investigations of the Loschmidt
echo consider one-particle systems evolving in a given
(usually chaotic) Hamiltonian. Several regimes have been
described in the past. For perturbations that are classically
weak but quantum-mechanically strong, the fidelity decay
is exponential, with a rate independent on the perturbation
and given by the classical Lyapunov exponent of the un-
perturbed system [14]. This behavior has been confirmed
by numerical simulations [15,16]. For weaker perturba-
tions, the decay rate is still exponential, but perturbation
dependent (Fermi golden rule regime). For still weaker
perturbations, the decay is Gaussian (perturbative regime)
[15]. For integrable systems, other types of decay (notably
algebraic) have been observed [17]. Finally, a perturbation-
independent regime, though with Gaussian decay, was also
observed in experiments [18].

In a previous work [19], we have applied the concept of
Loschmidt echo to a system of many electrons interacting
through their self-consistent electric field. The numerical
results showed that the quantum fidelity remains equal to
unity until a critical time, then drops suddenly to much
lower values. A similar result was also obtained for a
classical system of colliding hard spheres [20]. This effect
is probably related to the nonlinearity introduced by the
interactions between particles. Therefore, BECs should
constitute an ideal arena to determine whether such behav-
ior is typical of many-body quantum systems.

Model.—The dynamics of a BEC is accurately de-
scribed, in the mean-field approximation, by the Gross-
Pitaevskii equation (GPE). We considered a cigar-shaped
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condensate, where the transverse frequency of the confin-
ing potential is much larger then the longitudinal fre-
quency, !? � !z. In this case, a one-dimensional (1D)
approximation can be used, and the GPE reads as:

 i@
@ 
@t
� �

@
2

2m
@2 

@z2 � V�z� � g1DNAj j2 � H0 :

(1)

Here,
R
1
�1 j j

2dz � 1, NA is the number of condensed
atoms, g1D � 2a@!? is the 1D effective coupling con-
stant, and a is the 3D scattering length. The confining
potential contains a small quartic component, which can
be realized optically [21], V�z� � 1

2m!
2
z�z

2 � Kz4=L2
ho�,

where Lho � �@=m!z�
1=2 is the harmonic oscillator length.

We choose the parameters of the experiment described
in Ref. [2], where NA � 105 atoms of 87Rb (a � 5:7 nm)
are confined in a quasi-1D trap with!z=2� � 24:7 Hz and
!?=2� � 293 Hz. In the simulations, we normalize time
to!�1

z , space to Lho � 2:16 �m, and energies to @!z. The
dimensionless 1D coupling constant is then ĝ1D �
g1D=�Lho@!z� � 0:063. The quartic coefficient, which
will be crucial to excite a sufficiently complex nonlinear
dynamics, is taken to be K � 0:05. With the above pa-
rameters, the half-length of the condensate is roughly
24 �m.

The random perturbation �H can be realized in practice
using a laser speckle [11,12]. In our simulations, we model
the random potential through the sum of a large number of
uncorrelated waves: �H=@!z � �

PNmax
j�Nmin

cos�2�z=�j �
�j�, where � is the amplitude of the perturbation, �j’s are
the wavelengths, and �j’s are random phases. The smallest
wavelength present in the random potential is �min �
2Lho � 4:32 �m, which is consistent with the experimen-
tal correlation length, �z � 5 �m [2]. The wavelength
spectrum of the perturbation (i.e., the values of Nmin and
Nmax) affects only weakly the behavior of the fidelity;
therefore, we will focus our analysis on the dependence
of the fidelity on the amplitude �.

In order to compute the quantum fidelity, we proceed as
follows: (i) first, we prepare the condensate in its ground
state without perturbation; (ii) then, we suddenly displace
the anharmonic trap by a distance �z (a few micrometers);
(iii) finally, we solve numerically the time-dependent GPE
(1) with the perturbed Hamiltonian H0 � �H. Step (iii) is
performed for N � 11 uncorrelated realizations of the
random potential, thus yielding N evolutions of the wave
function,  j�t�. We then use all possible combinations to
compute the partial fidelities Fij�t� � jh i�t�j j�t�ij2.
There are, of course, M � N!=�N � 2�!2! � 55 indepen-
dent combinations, which are finally averaged to obtain the
quantum fidelity, F�t� � 1

M

PM
j�1 Fij�t�. This averaging

procedure allowed us to reduce considerably the level of
statistical fluctuations.

Results.—Our numerical results showed an unusual be-
havior for the quantum fidelity, which stays equal to unity
until a critical time �C, and then drops rapidly to small
values (Fig. 1). The critical time is defined as the time at
which the fidelity has dropped to 60% of its maximum
value, i.e., F��C� � 0:6. Interestingly, the fidelity can be
nicely fit by a Fermi-like curve

 f�t� � �1� f1�
�

1� exp
�
t� �C
T

��
�1
� f1: (2)

Equation (2) reveals the presence of two distinct time
scales: (i) the critical time �C and (ii) T � �C, which
measures the rapidity of the fidelity decay. The parameter
f1 simply reflects the fact that the fidelity cannot decay to
zero, because the system is confined in a finite region in
space. In Fig. 1, !zT � 4:86 is the same for all three cases
and is equal to the oscillation period of a particle trapped in
the anharmonic potential V�z�, for an initial condition
z�0� � �z, _z�0� � 0. This means that the fidelity decay
occurs over one single oscillation period.

This behavior was confirmed by investigating the de-
pendence of the quantum fidelity on the initial displace-
ment �z (Fig. 2). For each value of �z, the parameter T
appearing in Eq. (2) is taken to be equal to the correspond-
ing oscillation period in the anharmonic potential V�z�.
The oscillation period decreases with increasing energy
(and thus with increasing �z) and indeed the fidelity
drop becomes steeper for larger displacements. The critical
time also slightly increases with decreasing displacement
and goes to infinity for �z! 0. This presumably happens
because the dynamics of the condensate becomes too
regular when the confinement is harmonic.

Figure 3 shows that �C depends logarithmically on the
perturbation amplitude, i.e., �C 	�t0 ln�, with!zt0 ’ 3:3
(this is the straight line depicted in Fig. 3). This is similar to
what was obtained for another self-consistent model [19],
suggesting that such behavior is generic for N-body sys-

FIG. 1. Fidelity decay for �z � 3Lho, NA � 105, and three
values of the perturbation: � � 10�3, � � 10�5, � � 10�7 (the
critical time increases with decreasing perturbation). The dashed
lines are fits obtained using Eq. (2) with !zT � 4:86.
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tems, at least in the mean-field approximation. The critical
time also depends on the number of condensed atoms NA.
By decreasing NA, �C becomes considerably longer
(Fig. 4), and for NA ! 0 (i.e., for the linear Schrödinger
equation) we have that �C ! 1. For sufficiently large
condensates (NA 
 2� 104 for the case of Fig. 4), the
critical time depends logarithmically on the number of
atoms.

Finally, the collapse of the quantum fidelity is clearly
linked to the phases of the wave functions. Indeed, by
defining an ‘‘amplitude fidelity’’ Fa�t�� �

R
j H1

 H2
jdx�2

(which neglects information on the phases), we have veri-
fied that Fa�t� shows no sign of a sudden collapse when the
ordinary fidelity drops.

Discussion.—We have shown that the evolutions of two
BECs in slightly different Hamiltonians diverge suddenly

after a critical time �C. The interaction between the atoms
is obviously a vital ingredient, as �C ! 1 when the cou-
pling constant vanishes, i.e., for the linear Schrödinger
equation. The crucial point is that, for the GPE, the un-
perturbed Hamiltonian H0 depends on the wave function.
When the perturbation induces a small change in  , H0 is
itself modified, which in turn affects  , and so on. Thanks
to such a nonlinear loop, the perturbed and unperturbed
solutions can diverge very fast. In contrast, for the single-
particle dynamics H0 is fixed, and the solutions only
diverge because of the perturbation �H. Changes in  
add incrementally to each other, but cannot trigger the
nonlinear loop observed in the GP simulations [22].

This behavior is clearly linked to the phases of the wave
functions and could be tested experimentally by studying
the effect of a random potential on the interference pattern
of two condensates [6–9]. A possible experiment could be
performed as follows (see Fig. 5). First, a BEC is created in
a single-well trap; then, the trap is deformed into a double-
well potential [9,23], with the barrier between the wells
sufficiently high that the two condensates cannot tunnel
through it. The condensates are left in the double trap for a
time long enough to reach their ground state. A laser
speckle is then used to create a small random potential of
amplitude � and correlation length �z. If �z � d, where d
is the distance between the two BECs, each condensate is
subjected to a different random potential with the same
statistical properties.

In order to excite the dynamics, the total double-well
trap is suddenly shifted by a distance �z of the order of a
few micrometers. The BECs evolve in their perturbed trap
for a certain time t, after which both the trap and the
random potential are switched off, so that the condensates
can overlap and interfere. We predict that the contrast of
the interference fringes will depend on the time t and on the
perturbation �, in a manner analogous to the quantum
fidelity: if t < �C���, the contrast should be large, whereas

FIG. 3. Critical time �C (in units of !�1
z ) vs perturbation

amplitude �, for �z � 3Lho and NA � 105. The solid line
represents the curve �C 	�t0 ln�, with !zt0 � 3:3.

FIG. 4. Critical time �C (in units of !�1
z ) vs number of atoms

NA in the condensate, for �z � 3Lho and � � 10�5. The straight
line is a guide to the eye.

FIG. 2. Fidelity decay for NA � 105, � � 10�5, and different
values of the displacement �z � 2Lho, �z � 3Lho, and �z �
4Lho. The steeper curves correspond to larger values of �z. The
dashed lines are fits obtained using Eq. (2), with !zT � 4:27
(�z � 4Lho), !zT � 4:86 (�z � 3Lho), and !zT � 5:50 (�z �
2Lho).
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it should drop significantly for times larger than �C.
Performing several experiments with different perturbation
amplitudes and different numbers of condensed atoms
should allow one to reproduce qualitatively the logarithmic
scalings of Figs. 3 and 4. Accurate time-resolved measure-
ments might even reproduce the fidelity drop time T.

These results, together with those obtained for an elec-
tron gas at low temperature [19], suggest that many-
particle systems display a generic sudden decay of the
quantum fidelity. Thanks to the ease with which ultracold
atom gases can be created and manipulated in the labora-
tory, BECs should constitute an ideal arena to test these
predictions experimentally.
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periment described in Ref. [2]. We also thank R. Jalabert,
J. Léonard, and H. Pastawski for several useful sug-
gestions.
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FIG. 5 (color online). Two BECs ( H1
and  H2

) are created in
a double-well trap. A random potential with amplitude � and
correlation length �z is superimposed to the confining potential.
In order to excite the nonlinear dynamics, the trap is suddenly
shifted by a distance �z.
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