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We derive the collective low-energy excitations of the quantum phase model of interacting lattice
bosons within the superfluid state using a dynamical variational approach. We recover the well-known
sound (or Goldstone) mode and derive a gapped (Higgs-type) mode that was overlooked in previous
studies of the quantum phase model. This mode is relevant to ultracold atoms in a strong optical lattice
potential. We predict the signature of the gapped mode in lattice modulation experiments and show how it
evolves with increasing interaction strength.
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Interactions can have a dramatic influence on the prop-
erties of superfluids at low temperatures. In the most ex-
treme case, such as lattice bosons at commensurate filling,
interactions drive a quantum phase transition to an insulat-
ing phase [1]. But even inside the superfluid phase, inter-
actions may greatly impact on basic properties such as the
excitations, with the roton minimum in the spectrum of
helium providing a well-known example. In this Letter, we
investigate the effect of increasing interaction strength on
the collective modes in a superfluid of lattice bosons; the
latter are usually modeled by the Bose-Hubbard model
incorporating both hopping (parameter t) and local inter-
actions (U). The question has been brought into focus by
experiments with ultracold atoms in optical lattices that
were able to control the interaction strength and even drive
a transition to the insulating state [2]. More recent experi-
ments have probed the excitation spectrum of the super-
fluid in this strongly correlated regime by measuring the
energy absorption rate in response to periodic lattice mod-
ulations. The interpretation of the lattice modulation ex-
periments is complicated by the large magnitude of the
perturbation and the presence of a confining potential [3];
nevertheless, the results are very suggestive of the exis-
tence of a gapped collective mode in the superfluid phase
[4,5], which is at the center of interest in the present work.

The Bose-Hubbard model generates two effective low-
energy field theories for the complex order-parameter field
 , see Fig. 1: for weak interaction U �n� t, the effect of the
lattice can be absorbed in an effective band mass and one
arrives at the Galilean-invariant Gross-Pitaevskii theory
(nonlinear Schrödinger equation; �n is the mean filling per
site). Quite remarkably, close to the superfluid-insulator
transition at U� t �n, the combined action of the lattice and
the interaction leads to a Lorentz-invariant critical theory
(nonlinear Klein Gordon equation) [6]. The first-order time
derivative in the Gross-Pitaevskii theory defines the density
� � j j2 and hence any density mode is bound to the phase
degree of freedom, resulting in the unique and well-known
sound (or Goldstone) mode. This differs from the Lorentz-
invariant critical theory, where the second-order time de-
rivative spoils the relation between the order-parameter

modulus and the density; as a consequence, this theory
admits the possibility of independent amplitude (Higgs)
and phase (Goldstone) modes. Naturally, the question
poses itself, how the Higgs mode emerges upon increasing
the interactionU. This question should be addressed within
a microscopic theory that explicitly accounts for the inter-
play between interactions and the lattice, as is done by the
quantum phase model [7,8], a suitable approximation of
the Bose-Hubbard model for large filling �n. In what fol-
lows, we discuss in more detail the two effective low-
energy theories for the Bose-Hubbard model and their
interrelation with the quantum phase model and then con-
centrate on the derivation of the amplitude mode and its
experimental observation.

We start with the Bose-Hubbard model in a coherent
state formulation where the action is given by

 SBH�f ig� �
Z @�

0
d�LBH�f ig�

�
Z @�

0
d�
�X

i

 �i �@@� ��� i � t
X
hi;ji

 �i  j

�
U
2

X
i

j ij
2�j ij

2 � 1�
�

; (1)

FIG. 1. Schematic overview of models describing the super-
fluid phase of lattice Bosons. For small (dimensionless) inter-
actions u � U=2t �nz < 1= �n2, the Bose-Hubbard model is well
approximated by the continuum Gross-Pitaevskii action SGP� �.
Close to the critical interaction u 	 uc � 2, the dynamics is
described by the critical theory SMott� �. For u > 1= �n2, the
Bose-Hubbard model is equivalent to the quantum phase model,
analyzed in detail in this work.
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here, � is the chemical potential and � � 1=kBT is the
inverse temperature. The bosonic fields  i denote the
amplitude of particles in a Wannier state at site i.

The diverging correlation length �Mott / 1=
��������������������
z�uc � u�

p
near the (commensurate) superfluid–Mott-insulator transi-
tion at u � U=2t �nz � 2 allows for a description in terms
of a continuum critical theory LMott� � � j@@� j2=Jz�
Jz�uc � u�
�2

Mottjr j
2 � j j2� �Uj j4=2, with z � 2d

the coordination number and J � 2t �n. The emergent
(Higgs) mode involves a collective oscillation of the am-
plitude j j of the order parameter with a frequency that
vanishes at the transition. Such oscillation of the order
parameter is accompanied by a local change in the non-
condensed fraction, leaving the local density unchanged.
Furthermore, this mode is independent of the usual sound
mode; this can be understood from the fact that the order
parameter vanishes towards the transition while the density
remains constant.

Clearly the gapped amplitude mode is absent in the
opposite regime, of very weak interactions u� 1= �n2.
In this case, the length scale set by the interaction is
the well-known healing length �GP � a

�����������
t=U �n

p
� a. The

fact that �GP is much larger than the lattice constant a
allows for a continuum (Gross-Pitaevskii) description
LGP� � �  �@@� �U �n�2

GPjr j
2 �Uj j4=2. The ef-

fective Galilean invariance ensures that at zero temperature
there is no amplitude mode independent of first sound.

Comparing the regions of validity of the above coarse
grained theories, see Fig. 1, we observe that these regimes
are parametrically separated from each other for �n� 1.
The absence of a diverging length scale in the intermediate
regime 1= �n2 < u< 1 renders the effect of the lattice rele-
vant. As the Galilean invariance is explicitly broken, the
existence of an amplitude mode cannot be ruled out. For
large site occupancy, the Hubbard model in the intermedi-
ate (and strong) interaction regimes is equivalent to the
(simpler) quantum phase model [7,8]

 Ĥ QPM � �J
X
hi;ji

cos�’̂i � ’̂j� �
U
2

X
i

�n̂2
i ; (2)

with the Josephson coupling J � 2t �n. The conjugate op-
erators ’̂i and �n̂j, 
’̂i; �n̂j� � i@�ij, describe the local
phase and deviation from mean filling, respectively. The
derivation of ĤQPM from (1) involves an integration over
density fluctuations under the assumption h�n̂i= �n� 1 [1],
which is valid for u 	 1= �n2, and subsequent (re-) quanti-
zation. Here we restrict our considerations to the case of
integer filling �n 2 N.

We analyze the quantum phase model within a dynami-
cal variational approach [9], which accounts for both phase
and amplitude degrees of freedom and allows us to capture
the low-energy physics of a depleted condensate near the
Mott-insulator transition. We first derive the static proper-
ties in a mean-field approach and then include dynamics
within a Gaussian approximation. Finally, we discuss the

response of the system to an external lattice modulation,
thereby connecting our findings with recent experiments
[10]. Before proceeding, we note that a gapped excitation
closely related to the one considered here has been identi-
fied by Cazalilla et al. [4] using a bosonization approach to
a system with a strongly anisotropic optical lattice
potential.

Our variational wave function has the Gutzwiller form
 

j�i �
Y
i

X
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fni��i; ’i�jnii

with fni��i; ’i� �
1

�2��i�
1=4
e��ni� �n�2=2�iei �n’i ;

(3)

where jnii is a particle-number state of the quantum phase
model and �n̂ijnii � �ni � �n�jnii. The order parameter in
the state given by (3) is  i � hexp��i’̂i�i � e�1=4�ie�i’i ,
so that ’i and �i determine phase and amplitude (fluctua-
tions) of  i, respectively. The wave function j�i has a
norm h�j�i �

Q
i
P
ni f

�
nifni �

Q
i
P
m exp
��m��i�2�

and is not properly normalized, a consequence of the
discreteness of the particle numbers. This is not a problem
as long as we stay away from the transition so that the
particle-number fluctuation is large (�i � 1). We will
concentrate on this regime.

The variational energy 	var � h�jĤQPMj�i is given by

 	var � �J
X
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4
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and is minimized for ’i � ’mf 
 0 and �i � �mf 
 0 in
the Mott phase. In the superfluid phase �mf � 0, leading to
an order parameter (or condensate fraction)

 j 0j
2 
 e�1=2�mf � e2W��

��������
u=16
p

�; (5)

where W�x� is the Lambert-W function [11], cf. Fig. 2(b).
If this scheme is carried out blindly all the way to strong

coupling, the transition to the Mott insulator appears as of
first (rather than second) order. Besides a local minimum at
�i � 0, which is always present, a second minimum first

FIG. 2. (a) Spectra for the phonon (dash-dotted line) and the
amplitude mode (dotted line). Black curves correspond to u �
U=Jz � 0:25, gray curves to u � 1. (b) Gap �� of the amplitude
mode (dotted line) and the phonon bandwidth W’ (dash-dotted
line) vs dimensionless coupling u � U=Jz in the superfluid
phase. The gray shaded area corresponds to the Mott phase.
The solid line denotes the condensate fraction j 0j

2.
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appears at u? � 16=e2 	 2:16 (spinodal point). This spu-
rious first-order transition (at u1 	 1:47) is due to the
failure of the variational wave function when the
particle-number fluctuations become small h�n̂2

i i � 1
near the transition [8]. However, as mentioned earlier we
will use this approach only away from the critical regime
of LMott� � where (3) should be a good approximation.

Next, we describe the fluctuations above the mean-field
ground state (3) using a time-dependent variational princi-
ple. Following Ref. [9] we aim at an effective action (we
switch to real time)

 Seff �
Z
dtLeff �

Z
dth�ji@@t � ĤQPMj�i: (6)

While the minimizer of this expression provides the exact
action in case of unrestricted and properly normalized
variational states j�i, here, we restrict ourselves to the
class of variational wave functions [cf. (3)]

 fni �
1

�2��i�
1=4
e��ni��i�

2�1=2�i�2i�i�ei�ni��i�’i : (7)

This ansatz generates the Lagrangian
 

Leff�
X
i

@ _�i�i�@ _’i�i�
U
4
�i�

U
2
� �n��i�

2

�J
X
hi;ji

e��1�16�2
i �

2
i �=4�ie��1�16�2

j�
2
j �=4�j cos�’i�’j�:

(8)

The new parameters �i and �i in the wave function (7)
assume the role of canonically conjugate fields and allow
the order parameter’s amplitude (�i) and phase (’i) de-
grees of freedom to acquire dynamics. The interaction
terms / U are linear or quadratic in these fields and the
coupling between phase (’i) and amplitude (�i) degrees of
freedom is only through the hopping term / J.

We obtain an effective action in terms of the fields �i
and ’i by solving the Euler-Lagrange equations for �i and
�i. The static solution of the Euler-Lagrange equations for
the �i and ’i fields reproduces the mean-field ground state
Eq. (5). Expanding the effective action around (�mf , ’mf)
to second order, we find decoupled amplitude and phase
degrees of freedom in Leff . We use a Legendre transfor-
mation [�xi; _xi� ! �xi;�xi�, where x � �, ’] to quantize
the real, classical fields introducing ladder operators
(
x̂k; x̂

y
k0 � � �k;k0):
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Here, Axk �
��������������������������
@=2mx!x�k�

p
� Bxk=!x�k�, N is the number

of sites, and the ‘‘masses’’ are given by m� �
@

2j logj 0jj=2Jzj 0j
2 and m’ � @

2=U. We finally obtain
the quadratic Hamiltonian
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X
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X
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y
k�̂k (10)

describing phase and amplitude fluctuations above the
mean-field ground state. The dispersions of the modes
are given by
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where 
�k� � �2=z�
Pd
l�1 cos�k � al� with lattice vectors

al. The amplitude mode is characterized by a finite gap
�� � @!��0� extending throughout the entire range of
parameters [12], cf. Figure 2; for small u! 0 the ampli-
tude mode becomes nondispersive, i.e., @!��k� 	 �� for
all k. The phase mode, on the other hand, is gapless and

characterized by a sound velocity veff
s �

��������������������
UJzj 0j

2
p

a=@.
This is the Gross-Pitaevskii result, up to the factor j 0j

2

accounting for the depletion of the condensate at large u.
Because the sound mode corresponds to a density fluc-

tuation it can be probed directly by measuring the dynamic
structure factor related to the density-density response of
the system. This has been done in systems of ultracold
atoms by using Bragg spectroscopy [13]. The gapped
amplitude mode described above is not directly accessible
to Bragg spectroscopy because it does not involve a density
modulation. Rather, it is excited by perturbations that act to
modulate the particle-number variance, or equivalently, the
distance to the Mott-insulator phase. Experiments in ultra-
cold atoms have done just that [14]. By modulating the
strength of the optical lattice potential, those experiments
effectively modulate the tunneling which is exponentially
sensitive to the lattice depth. We remark that a similar
modulation of the coupling was proposed to be relevant
in experiments on Josephson junction arrays measuring the
attenuation of ultrasound [15]; however, only coupling to
the phase degrees of freedom was considered in this
context.

To calculate the response to a lattice modulation, we
return to the classical theory Leff , cf. Eq. (8), and extract
the kinetic energy by replacing J ! J� h, keeping track
of terms / h. Going through the requantization procedure
(9), we obtain the kinetic-energy operator T̂ � T̂� � T̂’
which we expand to lowest order in u
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u
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y
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(12)

The operator T̂� describes the expected direct coupling of
the lattice modulations to the amplitude mode at k � 0.
The other term T̂’ describes pair excitations of phase
modes (phonons) by the lattice modulations. Both opera-
tors scale as

���
u
p

for small interactions.
Accordingly, the linear response function Skin�!� �P
njhnjT̂j0ij

2��@!� @!n0�, with jni the eigenstates of
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the unperturbed Hamiltonian (10) and @!n0 the energy
differences between states j0i and jni, is composed of
two parts including a single mode peak due to the gapped
mode and a two-phonon continuum:

 Skin�!� �
2z2j 0j

4j logj 0jj
2������������������������

1� logj 0j
p N��@!� ��� � S

kin
2p �!�:

Both terms scale as u, see Fig. 3. In two dimensions, the
two-phonon continuum is given by Skin

2p �!� /

u!3K�@!
���������������������������������
1� �@!=2W’�

2
q

=W’�, with K�x� the complete

elliptic function; going to higher dimensions requires nu-
merical evaluation.

Expanding the effective Lagrangian Leff to third order in
the fields �i and ’i provides us with the most relevant
decay channel of the amplitude mode which turns out to
involve two counter-propagating phonons. We find that the
small (in dimensions larger than 1) phase space for such a
process leaves the mode under-damped and damping even
becomes irrelevant in the limit u! 0. Finally, we com-
ment that the same results can be obtained using an RPA
type calculation; such an approach allows for a systematic
improvement of the above results and will be discussed in a
future publication [16].

In summary, we derived a gapped amplitude (Higgs-
type) mode showing up in the quantum phase model using
a dynamical variational approach and discussed its rele-
vance in the context of superfluid bosonic atoms exhibiting
strong correlations due to the presence of an optical lattice.
Our analysis demonstrates that this mode persists down to
weak coupling u 	 1= �n2 where the Gross-Pitaevskii de-

scription takes over. We note that broken translation in-
variance (due to the presence of a lattice) is crucial for the
existence of this mode. This is also reflected in the experi-
ment where the coupling to this mode is introduced
through a modulation of the lattice; while experiments
have provided evidence for the presence of such a mode
[10], their spectral resolution does not yet allow for its
detailed analysis. Coupling to this mode in a Josephson
junction array seems difficult due to the rigidity of the
coupling parameters; on the other hand, the presence of a
charge density wave in NbSe2 may give access to this
mode [17–19]. While our analysis applies to the case of
commensurate filling, we expect our results to remain valid
away from this limit as the presence of the amplitude mode
is connected with a squeezed Gaussian wave function and
does not require the presence of particle-hole symmetry.
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logarithmic divergence is a density-of-states effect peculiar to
two dimensions). Both absorption probabilities scale as u at
small u.
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