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Magnetic zigzag edges of graphene are considered as a basis for novel spintronics devices despite the
fact that no true long-range magnetic order is possible in one dimension. We study the transverse and
longitudinal fluctuations of magnetic moments at zigzag edges of graphene from first principles. We find a
high value for the spin wave stiffness D = 2100 meV A? and a spin-collinear domain wall creation energy
E;,, = 114 meV accompanied by low magnetic anisotropy. Above the crossover temperature 7, = 10 K,
the spin correlation length £ o T~! limits the long-range magnetic order to ~1 nm at 300 K while below

T

., it grows exponentially with decreasing temperature. We discuss possible ways of increasing the range

of magnetic order and effects of edge roughness on it.
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Graphene, a two-dimensional form of carbon, has at-
tracted considerable attention due to its unique physical
properties and potential technological applications [1,2].
The possibility of designing graphene-based magnetic
nanostructures is particularly intriguing and has been fu-
elled by the recent experimental observations of magne-
tism in graphitic materials [3,4]. A number of exceptional
nanoscale spintronics devices built around the phenome-
non of spin polarization localized at one-dimensional (1D)
zigzag edges of graphene have been proposed [5-8].
However, feasibility of such devices is questioned by the
fact that no true long-range magnetic ordering in 1D
systems is possible at finite temperatures [9]. Never-
theless, nanometer range spin correlation lengths in certain
ID systems have been achieved in practice [10].
Establishing the range of magnetic order at graphene edges
as well as the underlying physical mechanisms is thus
crucial for practical realization of the proposed spintronics
devices.

In this Letter, we study the magnetic correlations at
zigzag edges of graphene by investigating the transverse
and longitudinal fluctuations of magnetic moments from
first principles. While the transverse excitations (spin
waves) are characterized by the continuous rotation of
the electron spin moments along the edge [Fig. 1(a)], the
longitudinal fluctuations affect the spin correlation length
only if an inversion of magnetic moments resulting in
appearance of a spin-collinear domain wall [11] takes
place [Fig. 1(b)]. The evaluated energies of these low-
energy excitations mapped onto the classical Heisenberg
or Ising models allow us to estimate the spin correlation
lengths at different temperatures. Finally, possible ways of
increasing the spin correlation length and the effects of
edge roughness are discussed.
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The first-principles calculations of the magnetic excita-
tions are performed on the density functional theory (DFT)
level using the Perdew-Burke-Ernzerhof exchange-
correlation functional [12]. A noncollinear spin DFT for-
malism [13,14] implemented in the PWSCF plane wave
pseudopotential code [15] in combination with the ultrasoft
pseudopotentials [16] and a plane wave kinetic energy
cutoff of 25 Ry is used to study spin wave modes. Much
larger supercells are required to obtain converged results
for the spin-collinear domain walls. These calculations are
performed using the standard spin-polarized DFT scheme
implemented in the SIESTA code [17] together with a
double-{ plus polarization basis set, an energy cutoff of
200 Ry and normconserving pseudopotentials [18]. Test
calculations performed on limited size systems verify that
both codes provide results in close agreement. The model
systems considered are the hydrogen-terminated periodic
one-dimensional graphene nanoribbons of different widths
and supercell lengths relaxed in their ground state
configurations.

a) b)

FIG. 1 (color online). Schematic representation of the trans-
verse (a) and longitudinal (b) low-energy spin excitation at
graphene zigzag edges. The magnetic moments of the outermost
edge atoms are shown by arrows. The direction of magnetic
moments is represented by direction of the arrows while the
magnitude is illustrated through the arrow lengths.
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The ground state electronic configurations of zigzag
graphene nanoribbons is characterized by the ferromag-
netic arrangement of spins along the edges and antiferro-
magnetic coupling of the spins at the opposite edges [19].
To obtain a spin-wave-excited state, we perform con-
strained self-consistent calculations with a penalty func-
tional term [20] added to the total energy expression in
order to induce small noncollinear deviations of the mag-
netization directions from the spin-collinear ground-state
configuration. The total energy difference is mapped onto
the quadratic spin-wave dispersion relation, E(g) = kg2,
with k = 320 meV A%, At a zigzag edge of graphene, the
magnetic moments of the outermost edge atoms mgg,. =
0.28 wp while the magnetic moments localized on the
atoms belonging to the A and B sublattices within a single
edge unit cell are my = 0.43 up and mp = —0.13 wp,
respectively. This yields a total magnetic moment of m =
my + mpg = 0.30 up per unit cell of zigzag edge. The
obtained value of m agrees with the fact that in zigzag
graphene nanoribbons, a flat band develops in one-third of
the 1D Brillouin zone 277/3 < |ka,| = m; a, = 2.46 A is
the unit cell length) when electron-electron interactions are
not taken into account [21]. The spin-wave stiffness con-
stant D = 2k/m turns out to be 2100 meV A%, Actually,
this is a very high value which is about 1 order of magni-
tude higher than the stiffness constant of bcc iron [22,23], a
three-dimensional solid with much larger magnetic mo-
ment of 2.2 up per atom. Thus, our results confirm the
expectation of higher spin stiffness values in magnetic
materials based on sp elements compared to d element
materials [24].

In sp-electron itinerant-electron magnets, Stoner-type
longitudinal spin fluctuations may be essential [24]. To
estimate their characteristic energy, we study collinear
domain walls at the graphene zigzag edge. We have per-
formed the calculations on a large graphene nanoribbon
supercells (up to = 1.8 nm wide and 6 nm long). In order
to converge the self-consistent calculations to the domain
wall solution, we provide an appropriate initial magnet-
izations of edge atoms with two equidistant domain walls
per unit cell for maintaining periodicity along the nano-
ribbon direction. Figure 2(a) illustrates the distribution of
the spin density at such a domain wall located in the center
of the edge fragment shown. The spin populations of the
outermost edge atoms [Fig. 2(b)] show that the domain
wall is practically localized within two unit cells (0.5 nm)
and the magnetization exhibits weak oscillations close to
the kink. The spin-resolved projected density of states for
the outermost edge atoms [Fig. 2(c)] shows an avoided
crossing pattern with band gap diminishing (but not clos-
ing) at the domain wall. From the total energy difference,
we find a collinear domain wall creation energy Eg, =
114 meV per edge.

In order to determine the magnetic correlation parame-
ters in the presence of spin wave fluctuations, we recall the
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FIG. 2 (color online). (a) Spin density isosurface plot for the
collinear domain wall excitation at a zigzag edge of graphene.
Light gray (red) and dark gray (blue) surfaces correspond to
spin-up and spin-down electrons, respectively. Spin populations
m (b) and spin-resolved projected density of states (c) for the
outermost edge atoms. The edge atoms are numbered with n.

nearest-neighbor 1D classical Heisenberg model
H= —aZﬁ,@iH — defﬁfH — mHZ§,-, (1)
7 i 7

where §; is the magnetic moment unit vector at site i and H
is the external magnetic field vector. The Heisenberg cou-
pling a = 2x/a? = 105 meV corresponds to the value of
k calculated above from first principles. The axial anisot-
ropy parameter d is expected to be small due to intrinsi-
cally weak spin-orbit coupling in graphene [25,26]. We
obtain an-order-of-magnitude estimate for the magnetic
anisotropy d/a = 107* using the spin-orbit coupling
strength of ~0.01 meV [25] predicted for graphene with
weak corrugations observed experimentally [27,28]. The
estimated d/a agrees with the recent measurements of 2D
magnetic correlations in irradiated graphite [29] and with
the electron spin resonance g-tensor anisotropies in graph-
itic molecular radicals [30,31].

The spin correlation length £ (« = x, y, z) defines the
decay law of the spin correlation function (§¢§¢, ) =
(5¢3%)yexp(—1/£%), ie., the range of magnetic order.
First, we evaluate the zero-field spin correlation length
due to the transverse spin fluctuations as a function of
temperature (see Fig. 3) [32]. Above the crossover tem-
perature T, = +/ad =~ 10 K [33], the small anisotropy
term of the model Hamiltonian has practically no influ-
ence, and the system exhibits behavior typical for an iso-
tropic Heisengerg model [34] with £¢, = 300/T [nm] and
(5#3%) = 1/3. Below T, the anisotropy term starts playing
an important role, and the solution exhibits a characteristic
for 1D Ising model exponential divergence of &%, «
exp(v/8ad/kT) and (§i5%) = 1 for T — 0 K. The spin cor-
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FIG. 3. Correlation lengths of magnetization vector compo-
nents orthogonal (£,) and parallel (&, £,) to the graphene plane
as a function of temperature T for weakly anisotropic (d/a =
10~%) and isotropic (d/a = 0) Heisenberg models.

relation length at zero field in the presence of spin-
collinear domain walls is the one for 1D Ising model,
&% =~ exp(Eq,/kT). Since Eqy, > +/8ad [33], the overall
spin correlation length ¢ in the presence of both transverse
and longitudinal fluctuations, ¢! = £} + &1 = £}, is
defined predominantly by the spin wave disorder.

At room temperature ( ~ 300 K), the spin correlation
length & = 3.7 unit cells ( ~ 1 nm). This result implies
that a spintronics device based on magnetic graphene edges
can be operated at room temperature only if its dimensions
do not exceed several spin correlation lengths, i.e., several
nanometers. The device dimensions can be scaled linearly
by lowering the operation temperature, and below T, this
size could be extended beyond the micrometer scale. These
estimations may first look rather disappointing, but never-
theless they are comparable to one of the most appealing
examples of 1D magnetism: monoatomic Co chains on Pt
substrate characterized by a ferromagnetic order range of
=~ 4 nm at 45 K [10]. In this d-element system, ferromag-
netic order stems mainly from the anomalously high
magnetic anisotropy which is absent in graphene nano-
structures. However, the lack of anisotropy is partially
compensated by the high spin stiffness which results in
considerable spin correlation lengths even in the isotropic
regime above T,. While the spin stiffness constant can
hardly be increased, we suggest several ways of increasing
the magnetic anisotropy (and thus 7',) by strengthening the
spin-orbit coupling through increasing curvature, applying
external electric field or coupling graphene to a substrate
[25]. Alternatively, the magnetic anisotropies can be in-
creased by chemical functionalization of graphene edges
with heavy element functional groups (e.g., iodine)
coupled to the spin-polarized edge states via the exchange
polarization [35,36]. Augmenting the crossover tempera-
ture above 300 K would result in a significant increase of
& to the length scales of the present-day semiconductor
technology.

Thus, the graphene edges at finite temperatures are not
actually ferromagnetic but superparamagnetic ones. For
the isotropic Heisenberg model, the enhancement factor
for the susceptibility in comparison with one of noninter-
acting spins reads [34]

X 1+u_2a

= 2
X0 1—u T 2)

where u = coth(a/T) — T/a and the approximation being
valid at @ > T. At room temperature, the susceptibility
enhancement factor y/y, = 8.

Although we found a relatively high value of Eg,, the
localized domain walls may become energetically more
favorable at edge defects, and therefore we discuss creation
of localized domain walls at different types of topological
imperfections at zigzag graphene edge classified as shown
in Fig. 4. The simplest case of edge roughness is a bound-
ary atom missing from the r-conjugation network
[Fig. 4(b)]. Such sp?-vacancy formation may result from
the rehybridization of an outermost atom into the sp? state
due to chemical modification or because of the creation of
a true vacancy. The domain wall creation energy at an
sp3-hybridized atom is found to be 24 meV, i.e., factor
of 5 smaller than E4, = 114 meV for the ideal zigzag
edge. Such decrease will have a dramatic effect on the
long-range magnetic order at room temperature since Eg,,
is lowered to kT ( = 25 meV at 300 K). An even more
dramatic decrease to 4 meV is observed at the Stone-Wales
defect [Fig. 4(c)], a topological structure obtained by the
90° -rotation of a single C—C bond which locally breaks the
bipartite lattice symmetry. The presence of an edge step
[Fig. 4(d)] has a less severe effect and reduces Ejy, to
62 meV. A completely different situation is observed for
a 120°-turn of the zigzag edge [Fig. 4(e)]. The antiferro-
magnetic arrangement of spins at the edge segments sepa-
rated by the 120°-turn is by 22 meV more stable than the
ferromagnetic arrangement. This is due to the change of
bipartite sublattice to which belong the outermost edge
atoms and due to the antiferromagnetic coupling between
the magnetic moments in different sublattices [37,38].
Similar behavior has recently been pointed out for the
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114meV  24meV  4meV 62meV -22meV

FIG. 4. Ideal zigzag edge of graphene (a) and various types of
edge defects: missing or rehybridized edge atom (b), Stone-
Wales defect (c), edge step (d), and 120° edge turn. The domain

wall creation energies at these structures are shown.
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edges of hexagonal graphene nanoislands [39]. Domain
walls are thus naturally pinned to such turns, although
the energy difference is close to k7T at room temperature.
A “spin-inverter”” device design based on such a 120°-turn
topology can be anticipated. Simple chemical modifica-
tions which do not perturb the 77 conjugation network at
graphene edges show almost no effect on Ey,,. For an ideal
zigzag edge terminated with electronegative fluorine
atoms, we find E4, = 117 meV very close to the value
for the hydrogen-terminated edge (114 meV).

To conclude, we have studied from first principles the
energetics of transverse and longitudinal spin fluctuations
at the one-dimensional magnetic zigzag edge of graphene.
The transverse fluctuations characterized by the high spin
stiffness constant are the main limiting factor of the spin
correlation length which is found to be ~1 nm at room
temperature. For the temperatures above ~10 K, the spin
correlation length is inversely proportional to the tempera-
ture due to the low magnetic anisotropy of the system.
Below the crossover temperature, the spin correlation
length grows exponentially with decreasing temperature.
We propose several approaches for extending the range of
magnetic order by increasing the magnetic anisotropy in
this carbon-based system and discuss the effect of edge
roughness on the spin correlation length.
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