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We study the physics of hard-core bosons with unfrustrated hopping (t) and nearest-neighbor repulsion
(V) on the three dimensional pyrochlore lattice. At half-filling, we demonstrate that the small V=t
superfluid state eventually becomes unstable at large enough V=t to an unusual insulating state which
displays no broken lattice translation symmetry. Equal time and static density correlators in this insulator
are well described by a mapping to electric field correlators in the Coulomb phase of a U�1� lattice gauge
theory, allowing us to identify this insulator with a U�1� fractionalized Mott-insulating state. The
possibility of observing this phase in suitably designed atom-trap experiments with ultracold atoms is
also discussed, as are specific experimental signatures.
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Much of our current understanding of the low tempera-
ture behavior of condensed matter systems is based on
highly successful theoretical paradigms such as Landau’s
Fermi liquid theory of normal metals, Bogoliubov theory
for superfluids, BCS theory of superconductivity, and spin-
wave theory for ferromagnets and antiferromagnets [1].
However, some systems exhibit behavior that falls outside
of any of these standard paradigms—one example of this
is the unconventional normal state of underdoped high-Tc
superconductors [2,3], while other examples include the
cooperative paramagnetic state of frustrated magnets [4]
and the unusual phenomenology of heavy fermion com-
pounds [5]. For instance, in the underdoped normal state of
high-Tc superconductors, some of the experimental evi-
dence is suggestive of the fact that the elementary quasi-
particles excitations are not spin-1=2 charge-e holes, but
spinless charge carriers propagating separately from
chargeless spin carriers [2,3].

This has motivated much of the recent effort aimed at
providing theoretically consistent descriptions of low tem-
perature phases of matter that would display such spin-
charge separation, or more generally, quasiparticle frac-
tionalization. These developments [6] allow one to con-
clude that such exotic behavior is indeed possible, and go
on to provide a description of quasiparticle fractionaliza-
tion in terms of an effective field theory with gauge sym-
metry [7,8]. In this approach, fractionalized quasiparticles
emerge as the true low-energy excitations in deconfined
phases of a gauge theory (in which the emergent gauge
force is not strong enough to bind the fractionalized qua-
siparticles into more conventional quanta), and can be
accompanied by additional gauge excitations that carry
energy but no spin or charge (such as the vortex excitation
of a Z2 gauge theory [9]).

A closely related strand of activity has focused on the
analysis of particular microscopic models in order to
understand whether they exhibit such exotic phases for
specific values of input parameters. This has led, for in-

stance, to the construction of several different models [10–
12] which exhibit so called Z2 deconfined phases (the
nomenclature refers to the effective gauge theory that
affords the most ‘‘natural‘‘ description of the low-energy
physics).

One may now ask: Is there an experimental system
which would display one of these fractionalized phases
for a definite range of control parameters? A promising
avenue in this regard is the physics of ultracold atoms in
optical lattice potentials. Recent work has demonstrated
that a wide variety of phenomena of interest to condensed
matter physics can be studied by appropriately engineering
systems of ultracold atoms in optical potentials. For in-
stance, it has been possible to provide a cold-atom realiza-
tion of the superfluid-insulator transition in a bosonic
hubbard model with on site interactions on a cubic lattice
[13,14]. This has been followed by several interesting
proposals for realizing fermionic and bosonic models
with a variety of tunable interactions in different optical
lattice geometries [15,16].

In this Letter, we use sophisticated Quantum
Monte Carlo (QMC) methods to provide the first confir-
mation of the existence of a U�1� fractionalized insulating
phase that may be realized in cold-atom systems modeled
by the Hamiltonian:

 H �
X
hiji

�V�ni � 1=2��nj � 1=2� � t�byi bj � bib
y
j ��

�
X
i

�U�ni � 1=2�2 ��ni�: (1)

Here, ni is the particle number at sites i of a three dimen-
sional pyrochlore lattice [Fig. 1(a)], byi is the correspond-
ing boson creation operator, U is the on site repulsion, and
V the nearest-neighbor repulsion between bosons hopping
(with amplitude t) on the nearest-neighbor links hiji.

Although the pyrochlore lattice geometry we consider is
technically challenging to realize, recent work that ap-
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peared as our study was underway provides a viable pre-
scription for experimentally realizing such an optical lat-
tice [17]. Furthermore, the simplicity of the interactions
means that they can be realized in state-of-the art cold-
atom experiments for a wide range of values of parameters
[14] including the ‘‘hard-core’’ limit (ni � 0, 1) of very
large U. We therefore focus on this hard-core limit in some
detail here, setting t � 1 and � � 0 in what follows. [In
this hard-core limit, Eqn. (1) may also be written in spin
S � 1=2 language via the mapping Szi � ni � 1=2, Jz �
V, J? � �2t.]

In this hard-core limit, with � � 0 to enforce density
1=2 per site, the physics at small V is readily tractable: As
the hopping t is unfrustrated, there is a stable superfluid
phase at small V—indeed a reasonable variational wave
function for the ground state in this regime may be easily
written down in spin language as j�i �

Q
ijS

x
i � �1=2ii.

What is the low temperature state in the opposite, large V
limit? To answer this, we use the well-documented [18]
stochastic series expansion (SSE) QMC method (at large
values of V, modifications developed recently [19] are
crucial to maintain ergodicity—for a review, see
Ref. [20]).

Numerics.—Most of our results are on L� L� L (L,
the number of up pointing tetrahedra that fit in one side-
length) samples with periodic boundary conditions and
even L ranging from L � 6 to L � 12, and inverse tem-
perature � ranging from 6 to 120 (with the largest �
employed for the largest size). We use standard SSE esti-
mators [18] to calculate the specific heat, the superfluid
stiffness �s, the bond (kinetic) energy correlations, and the
equal time C��

0
�q; � � 0� � hn��q�n�0 ��q�i and static

correlators S��
0
�q; !n � 0� �

R�
0 d�C

��0 �q; �� of the den-
sity n�i (here �,�0 refer to different basis sites in a unit cell,
and all site types [Fig. 1(a)] are assigned coordinates of
site-type 0).

As is clear from Fig. 2(a), we see a distinct transition
from a superfluid state at small V, to an insulating state at
large V for a sequence of low temperatures. This transition
is first-order at nonzero temperature [Fig. 2(a)], and while
the first order nature is less prominent in lower temperature
scans, a scaling analysis suggests that the transition re-
mains first order even in the zero temperature limit [21].
We estimate that this zero temperature transition is at
�V=t�c 	 19:3 [Fig. 2(b)].

In the insulator, we see absolutely no Bragg peaks that
would correspond to spatial ordering in either the local
density or the local bond energy. The insulator is thus, in
this specific sense, a liquid state of matter; this is illustrated
in Fig. 3 with several scans of density correlators in q space
at a representative point at very low temperature above the
insulating ground state. This absence of spatial ordering in
the insulating state of an interacting boson system at 1=2
filling is one of our striking results, for such featureless
insulating states are more typical of insulators with integer
density per site.

Interpretation.—Theoretical interpretation of this strik-
ing result is facilitated by noting that our Hamiltonian in
this hard-core limit is closely related to that studied in
Ref. [22]: Hermele et al. considered the S � 1=2 XXZ
antiferromagnet on the pyrochlore lattice. By an analysis of
a related effective model of planar rotors (with additional
terms added by hand to ensure better theoretical control),
they argued that a U�1� deconfined phase was a theoreti-
cally consistent possibility in the limit of extremely aniso-
tropic exchange Jz 
 J? > 0—however, since the
positive sign of J? introduces a sign problem in quantum
Monte-Carlo treatment of such models, their work stopped
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FIG. 2 (color online). (a) Superfluid density at � � 30—the
break around V � 19:2 indicates observed hysteresis near the
(weakly) first-order transition. (b) Schematic phase diagram:
dots with error bars denote observed transitions, and dot at
(19.4,1/30) denotes location at which insulating phase data is
displayed in Figs. 3 and 4.
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FIG. 3 (color online). Static S���q; !n � 0� and equal time
C���q; � � 0� correlators of the density in the deconfined phase
for � � 30, V � 19:4. The lines are a fit to the predictions of
noncompact U�1� gauge theory on the diamond lattice as dis-
cussed in the text, with fit parameters displayed above.
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FIG. 1 (color online). (a) Pyrochlore lattice and the underlying
diamond lattice. (b) Ring-exchange process on plaquettes of the
diamond lattice.
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short of making definitive statements about the actual
phase diagram of the S � 1=2 model. [For a different
effective model of rotors that displays a U�1� deconfined
phase, see Ref. [23]]

Although our situation differs from Ref. [22] crucially in
the opposite sign of the hopping term, this change of sign
does not affect [22] the arguments that make plausible the
existence of a deconfined phase at large V=t: As the
classical ground state for t � 0 is macroscopically degen-
erate (with all configurations with two particles occupying
each tetrahedron having minimum energy), the fate of the
system at large but finite V=t is then determined by the
structure of the effective Hamiltonian obtained to leading
order in degenerate perturbation theory in t=V.

As the t � 0, ground states can be represented in terms
of dimers living on the links of the dual diamond lattice
[Fig. 1(a)] subject to the constraint that two dimers touch
each diamond lattice site, such a perturbative analysis
yields (at leading O�t3=V2� order) a quantum dimer model
[22] with a ‘’’ring-exchange’’ term which causes a ‘‘flip-
pable’’ hexagon [see Fig. 1(b)] to resonate between its two
allowed configurations. The sign of this term is a matter of
convention [22] as it can be changed by an appropriate
canonical transformation. However, its structure, and the
structure of the constraint that defines the low-energy
manifold is highly reminiscent of a (compact) U�1� lattice
gauge on the diamond lattice [22]. As the compact U�1�
theory in three spatial dimensions admits a ‘‘Coulomb’’
phase that mimics ordinary electrodynamics, we conclude,
following Hermele et al., that this is a consistent possibility
at large V in our boson hubbard model.

Fits.—To proceed further, we note that in such a de-
confined phase, the low-energy properties are expected to
be described by the lattice version of standard Maxwell
electrodynamics with Hamiltonian H � �

2

P
hrr0ie

2
rr0 �

�
2

P
x
��rr0 � arr0 �2, where the lattice curl of the vector

potential arr0 is defined on the hexagonal plaquettes of
the dual diamond lattice [Fig. 1(a)], the microscopic den-
sity operator is related to the electric field by nrr0 � �err0
with � a nonuniversal scale factor, and � and � are the
emergent energy scales of this low-energy description.
[Although ��U ! 1, �� t3=V2 ! 0 in the formal V !
1, U ! 1 limit, their actual, renormalized values can be
substantially different from these bare estimates.]

To explore the implications of this ansatz for the density
correlators, it is useful to work with the corresponding
imaginary time action

 S�
1

2

Z �
�����
��
p

0
d~�
�X
hrr0i

�@~�~arr0 ��rr0 ~a��2�
X
x

��rr0 � ~arr0 �2
�
:

Here, ~� �
�������
��
p

� is the dimensionless imaginary time vari-
able obtained by scaling � by the typical photon energy�������
��
p

of this artificial electrodynamics, ~arr0 � v1=4arr0 the
rescaled vector potential, and ~a� � v1=4a�=

�������
��
p

the di-
mensionless scalar potential (v � �=�). As density cor-

relators are obtained by calculating corresponding correla-
tors of �v1=4�@~�~arr0 � �rr0 ~a�� using this action, it is im-
mediately clear that this electrodynamic ansatz predicts
C�� � 0;q� � �2

���
v
p
feq��

�������
��
p

;q� and S�! � 0;q� �

�2
���
v
p�����
��
p fst�q�. In order to test this ansatz, we have calculated

the functions feq��
�������
��
p

;q� and fst�q� and performed de-
tailed fits of our data for the density correlators C�� � 0;q�
and S�! � 0;q�.

Our fitting procedure is quite straightforward: We first
determine the best fit value of the scale factor cst by which
the function fst needs to be scaled to fit the static correla-
tors S. Next, we note that the shape of feq (as a function of
q) depends significantly on the value of the typical photon
energy

�������
��
p

that enters its first argument, and determine its
best fit value such that feq��

�������
��
p

;q� best mimics the shape
of the corresponding equal time correlators Ceq�q�. Finally,
we determine the best fit value of the corresponding equal
time scale factor ceq by which the function feq needs to be
scaled to fit the overall magnitude of the equal time corre-
lators Ceq.

Clearly, this is a very over-determined fit, since the same
set of parameters have to fit scans of the correlators in the
entire Brillouin zone, in addition to fitting data at different
temperatures (at fixed V=t). In addition, this procedure has
an in-built consistency check, since the value of photon
energy scale

�������
��
p

can be reobtained from the scale factors
by noting that ceq=cst �

�������
��
p

.
In Fig. 3, we show the results of such a fit of the static

(zero frequency) and equal time density correlators along
several scans in the Brillouin zone for a representative low
temperature point at which �s � 0 (similar fits work
equally well at other low temperature points in the insulat-
ing phase). Clearly, the data fits the predictions of non-
compact electrodynamics extremely well, with the best fit
values of the photon energy scale

�������
��
p

and �2
���������
�=�

p
shown

in Fig. 3 (the quoted uncertainty in the best fit value of
�������
��
p

also takes into account the accuracy with which the self-
consistency condition is satisfied). Furthermore, for fixed
V=t, the same parameters do indeed continue to fit the data
as the temperature is varied [Fig. 4(a)].

Discussion.—These fits are extremely convincing evi-
dence that we have accessed the low temperature regime
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just above a Coulomb liquid ground state. Nevertheless, it
is instructive to play devil’s advocate and ask if the mea-
sured correlators can satisfy the predictions of noncompact
electrodynamics to this level of accuracy if the system does
not have a deconfined Coulomb liquid ground state.
Perhaps surprisingly, the answer is yes, but only if the
data has been taken at temperatures such that thermal
fluctuations overwhelm all quantum dynamics.

Assume for instance that the insulator is a more conven-
tional lattice-symmetry breaking crystal that one may have
expected at fractional filling. If one happens to be at a
temperature above the melting temperature of this putative
crystal, then thermal fluctuations would completely over-
whelm quantum effects, and the physics would be essen-
tially classical. As long as the temperature remains much
smaller than V, this classical physics is correctly described
by the classical dimer model on the diamond lattice, re-
gardless of the quantum ground state.

Now, static and equal time correlators of any quantum
system are proportional to each other (with proportionality
constant �) in any such effectively classical regime. Thus,
we expect dimer correlations of the classical dimer model
to correctly describe the functional form of both the static
and equal time correlators of the system in this regime.
Furthermore, these classical dimer correlators are known
[24] to have precisely the same functional form as the static
correlators of H .

Regardless of the quantum ground state, we thus expect
our data for static and equal time correlation functions to
be necessarily proportional to each other and match pre-
dictions of quantum electrodynamics in this classical re-
gime. Is this ‘‘trivial’’’ mechanism responsible for the
extremely good fits shown in Fig. 3? The answer is clearly
no: If this were the case, the static and equal time correla-
tors, being proportional to each other, would have the same
shape (as a function of q). This is clearly not the case for
the low temperature data shown in Fig. 3, as is underscored
by a comparison to data at much higher temperatures
[Fig. 4(b)], where this commonality of shape does become
clearly visible.

The weight of all this evidence thus allows us to con-
clude that we are indeed seeing a Coulomb liquid state of
matter in our simulations. What would be the best way to
‘‘look’’ for this state of matter in a putative cold-atom
experiment? At the most gross level, this phase is an
incompressible insulator, with a gap to charged excitations.
The distinctive difference from ordinary Mott-insulating
phases (such as those seen in the experiments of Ref. [13])
is the presence of a gapless neutral collective mode,
namely, the artificial photon of the U�1� gauge theory
mentioned above. As we have demonstrated above, this
neutral mode leads to characteristic dipolar structure in the
low temperature equal time and static density correlators.
These correlations can be measured in atom-trap experi-

ments by noise correlation [25] measurements that probe
equal time correlators, and Bragg scattering experiments
[26] that probe static correlators.
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