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We study a general model of isotropic two-dimensional spin-1 magnet, which is relevant for the physics
of ultracold atoms with hyperfine S � 1 spins in an optical lattice at odd filling. We demonstrate a novel
mechanism of soliton pairing occurring in the vicinity of a special point with an enhanced SU�3�
symmetry: upon perturbing the SU�3� symmetry, solitons with odd CP2 topological charge are confined
into pairs that remain stable objects.
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Introduction.—Many condensed matter systems can be
successfully described with the help of low-energy effec-
tive continuum field models. In systems with reduced
spatial dimensionality, topologically nontrivial field con-
figurations (solitons) are known to play an important role
[1]. In many magnetic systems the fluctuations of the
magnetization length occur at a higher energy scale and
can be neglected. The effective theory is then the so-called
O�3� nonlinear sigma model (NLSM), and its topological
excitations are well understood [2].

One has to go beyond the NLSM description in case of
proximity to quantum phase transitions. Our interest is in
the general S � 1 model on a two-dimensional (2D) square
lattice described by the Hamiltonian

 H �
X
hiji

hij; hij � �J�Si � Sj� � K�Si � Sj�2; (1)

where hiji denotes the sum over nearest neighbors, and J
and K > 0 are, respectively, the bilinear (Heisenberg) and
biquadratic exchange constants. This model describes
physics of ultracold alkali atoms with hyperfine S � 1
spins (e.g., 23Na) in optical lattices at odd filling [3], and
parameters J and K can be varied by tuning the ratio a2=a0

of scattering lengths in S � 2 and S � 0 channels using the
Feshbach resonance. Similar models were proposed [4] as
a possible explanation for the unconventional spin state
discovered recently [5] in the quasi-2D S � 1 magnet
NiGa2S4, and were also discussed [6] in context of the
deconfined quantum criticality conjecture [7].

The model (1) has SU�2� symmetry that is enlarged to
SU�3� at two points, J � K and J � 0. The point J � K,
which marks the ferromagnetic-ferroquadrupolar transi-
tion, corresponds to a2 � a0 [3] in the cold bosons case
with one atom per site. Our goal here is to show that the
crossover from SU�3� to SU�2� symmetry features a novel
mechanism of topological pairing: solitons with odd CP2

topological charge are confined into stable pairs. This is in
contrast to the usual scenario where solitons collapse if the
symmetry is lowered [e.g., U�1� vortices when U�1� gets
broken down to Z2].

Continuum field description.—The spin-1 state j ij at a
given site j is a linear superposition of three basis states
j�ij with Szjj�ij � �j�ij, � � 0, �1. It is convenient to
write down the spin-1 state at site j as

 j ij �
X

a�x;y;z

tj;ajaij; (2)

using the ‘‘Cartesian’’ states jzi � j0i, jxi � �j � 1i �
j � 1i�=

���
2
p

, jyi � i�j � 1i � j � 1i�=
���
2
p

, then the three
numbers tja transform under rotations as the components
of a complex vector tj, with the normalization t�j � tj � 1.
The states (2) can be viewed as SU�3� coherent states
corresponding to the bosonic operators t̂j;a, and the S �
1 operator can be represented as Saj � �i�abct̂

y
j;bt̂j;c. Since

the overall phase factor in (2) can be arbitrary, the order
parameter space of the problem is isomorphic to CP2.

The lattice Lagrangian of the model expressed in terms
of the complex unit vector t takes the form

 L �
X
j

i�t�j � @ttj� �W; W �
X
hiji

hĥi;ji; (3)

where the local Hamiltonian average hĥi;ji is given by

 hĥi;ji � J�t�i � tj��t
�
j � ti� � �J� K��t

�
i � t

�
j ��ti � tj�: (4)

The Lagrangian is invariant under global rotations tj;a �
Rabtj;b, with an arbitrary O�3� rotation matrix R, as well
as under local ‘‘gauge’’ transformation tj � tjei�j . At J �
K the symmetry becomes higher as there is an invariance
under a global transformation tj � Utj, with U 2 SU�3�.
If the lattice is bipartite, at J � 0 the energy is invariant
under an arbitrary SU�3� rotation on the sites belonging to
one sublattice, accompanied by a conjugate transformation
tj � U�tj at the other sublattice, so the point J � 0 is
SU�3� invariant as well.

Breaking up the complex vector t � u� iv into two
real vectors representing its real and imaginary parts, one
can write the on-site spin and quadrupole averages as
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hSi � 2�u	 v�;

Sab 
 hSaSb � SbSai � 2��ab � uaub � vavb�:
(5)

One can use a different parametrization, directly con-
nected to the physical averages, by introducing the eight-
component vector n,

 n� � t� � �̂�t; (6)

where �̂�, � � 1; . . . ; 8, are the well-known Gell-Mann
matrices that form, together with a unit matrix 1, a basis in
the SU�3� matrix space. The vector n is subject to the
following two constraints:

 n 2 � 4=3; n � �n � n� � 8=�3
���
3
p
�; (7)

where the � product of any two vectors n and n0 is defined
as �n � n0�� �

���
3
p
d���n�n

0
�, and d��� are the structure

constants defined by the anticommutation properties of the
Gell-Mann matrices, f��; ��g �

4
3���1� 2d�����. One

can show that the constraints (7) in fact reduce the dimen-
sion of the n space to four. The quantities n� correspond to
the following on-site averages:

 n2 � hSzi; n5 � �hSyi; n7 � hSxi;

n4 � Sxz; n6 � Syz; n1 � Sxy;

n3 � �Sxx � Syy�=2; n8 �
���
3
p
�Szz=2� 2=3�;

(8)

which can be split into the vector of spin averages m and
the vector of quadrupolar averages d,

 m � �n7;�n5; n2�; d � �n1; n3; n4; n6; n8�: (9)

In those variables, the Hamiltonian takes the simple form

 hhi;ji � �
K
3
�
K
2
�di � dj� �

1

2
�K � 2J��mi �mj�; (10)

which explicitly shows that J > K corresponds to a ferro-
magnet (FM), J < 0 to an antiferromagnet (AFM), and 0<
J < K to a quadrupolar (spin nematic) order (hereafter we
assume that K > 0 and will not discuss the so-called
orthogonal spin nematic present at K < 0).

In terms of n, the lattice Lagrangian can be written as
L �

P
j��nj� �

P
hijihhiji, with the dynamic part

 ��n� �
3

4

n0 � �n ^ @tn�

1� 3
2n0 � n

: (11)

Here the SU�3� cross product is defined as �n ^ n0�� �
f���n�n0�, where f��� is another set of structure constants
defined by commutators of the group generators
���; ��� � 2if�����, and n0 is an arbitrary vector satisfy-
ing the constraints (7).

Topological analysis.—To describe topological solitons,
one needs to pass to the continuum description first. The
continuum Lagrangian of the model (3) can be obtained by
the gradient expansion of the discrete energy W retaining
the leading terms that gives W �

R
d2xw with

 

w � Jfj@	tj
2 � jt� � @	tj

2g � �J� K�jt2j2

� �J� K�
�
jt � @	tj

2 �
1

2
�t2�@	t�

2 � c:c:�
�
; (12)

where 	 runs over space coordinates �x; y�. The above
form is valid for the region J > K=2, where the short-range
spin-spin correlations are of the ferromagnetic type, as can
be seen from (10).

To classify the topological excitations, one needs to
know the so-called degeneracy space MD that includes
all values of the order parameter field corresponding to
the ground state of the system. For the model (1) the space
MD is continuous and depends on the type of the ground
state: for FM or AFM it coincides with the unit sphere S2,
for the nematic case it is a 2D real projective space RP2 �
S2=Z2 (a unit sphere with the opposite points identified),
and at J � K the degeneracy space is enlarged to CP2. For
all the above spaces, the second homotopy group is non-
trivial, 
2�MD� � Z, which makes possible the existence
of so-called localized topological solitons, whose order
parameter distribution becomes uniform away from some
point.

If the order parameter lies completely in MD, the energy
contains only terms with gradients, so there is no natural
space scale. If corresponding soliton solutions exist, they
have a finite energy that does not depend on their size, and
are stable against collapse. Another possibility is to allow
the order parameter to leave MD, which breaks the scale
invariance. Static solitons of that type are unstable against
collapse due to the Hobart-Derrick theorem, but they can
be stabilized by some internal dynamics [1,2]. We will
study the structure of both types of solitons for the model
(1).

For the sake of analyzing static soliton solutions, the
Lagrangian (3) with the energy (12) is equivalent to the
2D CP2 model [8] with an additional ‘‘anisotropy term’’
proportional to �J� K�. Let us start from the
SU�3�-symmetric point J � K. In that case a localized
topological soliton corresponds to the field configuration
with nonzero topological charge [8]:

 q � �
i

2


Z
d2x�	��@	t� � @�t�; (13)

where the indices 	, � run over �x; y�. The invariant (13)
takes only integer values and corresponds to the mapping
of the compactified 2D space S2 onto CP2. The exact q � 1
soliton solution is well known [8]:

 t � ��a� zb�=
�������������������
jzj2 � �2

q
; (14)

where z � x� iy is the complex coordinate (the soliton
center is assumed to be at the origin), a and b are two
mutually orthonormal complex vectors, and � has the
meaning of the soliton size. The energy of such excitation
according to (12) is E � 2
K. For an arbitrary value of q,
the general soliton solution can be written as
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ta �
fa

�
P
a jfaj

2�1=2
; fa � ca

Yq
k�1

�z� zk;a�; a� x;y; z;

(15)

and the corresponding energy is E � 2
Kjqj.
Ferromagnetic solitons.—On the ferromagnetic side

J > K the minimum of energy is achieved for

 t � �e1 � ie2�=
���
2
p

(16)

with e1;2 being a pair of orthogonal real unit vectors. In that
case, on the degeneracy space MD the order parameter is
equivalent to the unit vector m � �e1 	 e2� (a rotation
around m corresponds to a change of the overall phase
factor t � tei’ and thus does not change the physical
state). Thus, localized topological solitons for J > K cor-
respond to the mapping S2 � S2 and are characterized by
another topological charge

 Qm �
1

8


Z
d2x"	�m � �@	m	 @�m�: (17)

It is easy to calculate the topological charge (13) for a
restricted field configuration satisfying (16): a general pair
of orthonormal vectors e1;2 can be obtained from ex;y by an
arbitrary rotation R�;’;  �, where  and ’ are, respec-
tively, the polar and azimuthal angles characterizing the
direction of the unit magnetization vector m, and the third
angle  corresponds to the rotation around m. A straight-
forward calculation yields

 q �
1

2


Z
d2x sin�	��@	��@�’� � 2Qm: (18)

One is led to conclude that solitons of the CP2 model tend
to pair upon perturbing the SU�3� symmetry, which con-
stitutes the central observation of this Letter.

The above result can also be obtained by noticing that
for the configurations (16) the energy takes the form W �
�J=2�

R
d2x�@	m�2. This is exactly the energy of the O�3�

NLSM, and the well-known Belavin-Polyakov (BP) soliton
solution [9] with the topological charge Qm � 1 will have
the energy E � 4
J, which in the limit J ! K is twice the
energy of the q � 1 soliton (14) of the CP2 model. In fact,
one can explicitly check that the ferromagnetic BP soliton
is a particular case of the general solution (14) with q � 2.

Solitons for spin nematic.—On the nematic side J < K
the minimum of energy is reached for t � uei�, where u is
a real unit vector and � is an arbitrary phase. The degen-
eracy space is thus MD � RP2. The energy then takes the
form W � K

R
d2x�@	u�2, where u must be understood as

a director; i.e., u and �u are identical. It is worth noting
that in contrast to the other phases the spin nematic allows
for a nontrivial 
1-topological charge as well, 
1�RP2� �
Z2.

If one defines the topological charge Qu according to
(17), simply replacing m by u, then in the BP soliton with
Qu � 1 the director u goes over MD twice; the energy of
such a solution is EBP � 8
J. However, the director prop-

erty of u allows one to construct a solution [10] with u
going over MD just once, which hasQu �

1
2 and the energy

~EBP � 4
J. In the limit J ! K this is again twice as much
as the energy of the q � 1 solution (14), which suggests
that this soliton is a descendant of the q � 2 solution of the
CP2 model. This indicates that the tendency to pairing
exists on the nematic side as well.

The fate of solitons with q � 1.—Up to now we have
considered only static solitons with the order parameter
lying completely inside MD. We found that for J� K � 0
the lowest energy solutions of that type are descendants of
the q � 2 soliton of the CP2 model, while the q � 1
solution seems to exist only at J � K. To get further
understanding of what happens in the vicinity of the
SU�3�-symmetric point J � K, let us discuss the CP2

soliton with q � 1 for small but finite J� K. One can
easily see that at J� K � 0 any solutions with q � 1 must
involve a deviation of the order parameter from the degen-
eracy space MD. Because of the Hobart-Derrick theorem,
this means instability of static solitons with q � 1 against
collapse. However, q � 1 solitons can be stabilized by
internal dynamics in the presence of additional integrals
of motion; e.g., stable solitons with the magnetization
vector precessing around the easy axis exist in the uniaxial
ferromagnet [2]. In our case, it is also possible to construct
such a solution. In terms of the complex vector t � u� iv
this is a planar configuration, where u and v are parallel to
the plane �1; 2� orthogonal to some axis e3; for definiteness
let it be the z axis (a more general solution can be obtained
by an arbitrary rotation). It is convenient to use the 8-vector
notation (6): only four components of n are nonzero and it
takes the form n � �Rx; Rz; Ry; 0; 0; 0; 0; 1=

���
3
p
�, whereR is

a unit vector combining one spin average Rz � m3 and two
quadrupolar variables Rx � d1, Ry � d2 [cf. (9)]. Using
(10) and (11), one obtains the effective Lagrangian for the
chosen subspace,
 

LR �
1

2

X
j

R0 � �Rj 	 @tRj�

1�R0 �Rj
�WR;

WR � �
X
hiji

�
K
2
RiRj � �J� K�Rz;iRz;j

�
;

(19)

where R0 � �0; 0;�1�, and in (11) we have used n0 �

�0; 0;�1; 0; 0; 0; 0; 1��
3
p �. The Lagrangian (19) describes the

dynamics of a classical anisotropic ferromagnet with the
unit magnetization vector R; the anisotropy constant is
proportional to J� K. At the isotropic point J � K the
energy WR � �K=2�

R
�rR�2d2x, and there exists a BP-

type soliton that has the energy EJ�K � 2
K and is a
special case of the q � 1 CP2 solution (14). The CP2

charge q given by (13) is obviously equal to the
Pontryagin index QR defined by (17) with m � R; the
BP solution corresponds to the mapping of S2 onto the
subspace CP1 embedded into CP2 and has QR � q � 1.

For a finite ‘‘anisotropy’’ �J� K� the BP soliton be-
comes unstable against collapse, but the situation is differ-
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ent for the spin-nematic and FM regions. In the FM case
(J > K) the anisotropy is of the easy-axis type, and there
exist QR � q � 1 dynamic solutions, with R precessing
around the z axis [2], which are smoothly connected to the
BP solitons in the J ! K limit. A detailed analysis [11]
shows that the minimal energy of such dynamic solitons
exhibits a nonanalytic behavior of the type Emin �

EJ�K�1� 3:74
������������������
J=K � 1

p
�, as shown in Fig. 1. For small

J� K  0:1K, when the above expression is valid, the
energy of a static q � 2 (Qm � 1) soliton considered
above stays higher than that of the q � 1 (QR � 1) dy-
namical soliton, but at the same time remains smaller than
the energy of two dynamical q � 1 solitons, which indi-
cates that it is energetically favorable to bind two QR � 1
solitons into a single Qm � 1 one.

In the nematic case (J < K) we effectively have a ferro-
magnet with the easy-plane anisotropy. For such case,
delocalized 
1 solitons (vortices) exist. Vortices in R field
correspond to spin-nematic disclinations considered in
Ref. [12]. The energy of a single vortex diverges logarith-
mically with the system size, so a static vortex-antivortex
pair is unstable against collapse. The BP soliton can be
considered as a pair of ‘‘merons’’ carrying topological
charge QR �

1
2 each [13]. For small �K � J� those merons

can be viewed as a vortex and antivortex with a finite out-
of-plane component of the vector R, they are subject to a
gyroforce [12], and there may exist stable dynamic solu-
tions (rotational pairs of vortices) similar to those studied
in Refs. [14,15]. Their energy will tend to 2
K in the limit
J ! K; similar to the FM case, in the vicinity of the J � K
point the QR � 1 topological solitons will be unstable
against pairing into ‘‘nematic’’ Belavin-Polyakov solitons
with Qu �

1
2 .

Finally, a few words are to be said about the other,
antiferromagnetic SU�3�–symmetric point J � 0. From
(4) one can see that on any bipartite lattice the transforma-
tion tj � t�j for all j belonging to one sublattice maps the
points J � 0 and J � K onto each other. As can be seen
from (10), and is especially clear from the ‘‘classical spin

analogy’’ (19), for J < K=2 the short-range correlations
are antiferromagnetic, and the proper transition to the
continuum description becomes more complicated; how-
ever, one can show that the difference concerns only dy-
namics and does not affect the static properties. The
arguments leading to (18) and thus the conclusion on
soliton pairing equally apply to the vicinity of the J � 0
point.

Summary.—For a general non-Heisenberg model of the
2D isotropic S � 1 magnet, we have shown that in the
vicinity of SU�3�-symmetric points topologically charged
soliton excitations exhibit a peculiar topological pairing: in
contrast to the usual scenario of soliton collapse with low-
ering the symmetry, solitons with odd CP2 topological
charge become confined into stable pairs when the SU�3�
symmetry is broken down to SU�2�.
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FIG. 1. Energy of topological solitons in the vicinity of the
SU�3�-symmetric point J � K. Solid lines show the energy of
static solitons with the CP2 topological charge q � 2, and the
dashed line corresponds to the descendants of the q � 1 soliton
of the CP2 model.
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