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Optical Control in Coupled Two-Electron Quantum Dots
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The dynamics of two electrons in a 2-dimensional quantum dot molecule in the presence of a time-
dependent electromagnetic field is calculated from first principles. We show that carefully selected
microwave pulses can exclusively populate a single state of the first excitation band and that the transition
time can be further decreased by optimal pulse control. Finally we demonstrate that an oscillating charge
localized state may be created by multiple transitions using a sequence of pulses.
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Coherent control of interacting electrons in quantum dot
molecules exposed to pulsed electromagnetic radiation is
of fundamental interest and importance for a wide range of
applications, from charge transport devices to quantum
information [1-5]. In quantum information theory optical
manipulation is an alternative to storing qubits in the
electron spin [6,7], and an ‘‘all optical quantum gate”
based on four low-lying two-electron states was recently
experimentally verified with around 65% fidelity [8]. The
short transition time in optically driven processes reduces
the effect of decoherence sources, such as hyperfine [4] or
phonon interactions [9]. However, effective utilization of
transitions between excited states requires precise knowl-
edge of the energy spectrum defined by the confining po-
tential and the electron-electron interaction. Theoretical
models accompanied by accurate calculations in this con-
text demonstrate the true and ideal time development of the
system and thus allow for assessment of possible realistic
control schemes.

Theory of charge transport and excitation in one- and
two-electron dots is most often based on restricted Hilbert
space models, simplified Hubbard-like models, or contin-
uum approaches [10—12]. In the present Letter we demon-
strate, based on precise quantum simulations, optically
driven transitions using picosecond pulses between excited
states of a double quantum dot molecule with near 100%
fidelity. The evolution of the system is obtained by solving
the time-dependent two-electron Schrédinger equation nu-
merically without any further approximations. Coherent
two-electron charge transport is demonstrated, and we
successfully apply a control algorithm to further optimize
transition times and fidelity. To the best of our knowledge
neither optical control nor optimization have previously
been achieved in a two-electron double quantum dot.

The Hamiltonian of two interacting electrons in a double
quantum dot with interdot distance d is modeled as a two-
dimensional double harmonic oscillator [13,14],
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Furthermore, r, , are single-particle coordinates and rj, =
Ir; — r,|. The material parameters are taken as those of
GaAs, with effective mass m* = 0.067m, and relative
permittivity €, = 12.4. The confinement strength is here
taken to be a typical “experimental’’ value, iw = 1 meV
[4]. The interaction with an external electromagnetic field,
linearly polarized along the interdot direction, is expressed
within the dipole approximation as

Vext(rix t) = Ef(t) COS(wt)Xl', (3)

h(x,y)= o

where [ = 1,2, E is the field strength, f(z) is the pulse
envelope, and w is the central frequency. The Hamiltonian
is spin-conserving and the exact wave function at any time,
W¥(r), may be obtained from an expansion in symmetrized
basis states of one-center single-particle harmonic oscilla-
tor eigenfunctions ¢;,
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N e FIG. 1 (color online). The figure shows the 10 lowest singlet
H = h(r;) + h(ry) + dre.€ntis ) energy levels of the field free Hamiltonian of Eq. (1) with d =
re0t12 130 nm, V., =0, and Aw = 1 meV. The * indicates the x
where parity of the highlighted states.
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with i, j = {n,, n,} representing the quantum numbers of
the Hermite polynomials in x and y, respectively. The
spectrum of the field free Hamiltonian was recently clas-
sified as a function of the interdot distance d [15]. The
lower part of the resulting singlet spectrum for d =
130 nm is shown in Fig. 1. We observe a clustering of
levels into energy bands which can be understood and
|
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with the L, R subscripts denoting left and right centered
orbitals, respectively. The four singly excited states can be
classified with respect to positive or negative parity as
{le;, ==), les, ==+, les, +—), |les, ++)}. The third energy
band contains two excited states of different x parity,
{lions, ++), lions, —+)}, which asymptotically correlate
to the two-electron ground state of a single dot, in analogy
with ionic states of diatomic molecules. The states can be
inspected by plotting the single-particle electron density,
p(r) = [d*ry|W(r, r,)|?, shown in Fig. 2 for the states
lg, ++), ley, —+), and |iong, —+). Shown in Fig. 2 are
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FIG. 2 (color online). One-electron densities (left column) and
conditional densities (right column). The conditional densities
are evaluated at one maximum of the wave function, for each
electron (solid and dashed lines). Upper panel: ground state,
middle panel: 2nd excited state, and lower panel: 6th excited
state. The right column shows that the two upper states may be
regarded as ‘“‘covalent’ states, whereas the lower state is an
“jonic” state with both electrons in the same dot. The double dot
potential is also shown. The interdot distance is d = 130 nm.
Both axes in the left column range from —165 to 165 nm.

fairly accurately described by the behavior at asymptoti-
cally large interdot distances: The ground state, |g, ++),
has positive parity in both the x and the y direction (in-
dicated, respectively) and is essentially a combination of
the ground states of two harmonic oscillators centered at
+d/2. The second band has four excited states which
contain a single excited quanta (n%, n%, n®, or nf =1)
and are of the form,

+ ¢10(r18) Doo(rar) + Poo(rir) D 10(rar), (5)

{
also the conditional single-electron densities obtained by

fixing all degrees of freedom except one x component at a
maximum of the wave function, and similarly for the other
x component (electron). The densities of the ground state
lg, +) and the second excited state |e, —) (upper and
middle panels) are seen to have the characteristics of two
displaced eigenstates of the harmonic oscillator, and the
conditional densities clearly show that “one” electron is
centered in each dot. Note that we have suppressed the y
parity and state number to simplify notation. The state
lion, —) (lower panel), in contrast, shows a high probability
that both electrons occupy the same dot. As mentioned, in a
basis of asymptotic states the two ionic states |ion, =)
resemble the entangled states

lg(riz, ran)) = |g(rig, rag))s (6)

where |g) refers to the shifted ground state of a single two-
electron dot.

On this background we may construct optically con-
trolled transitions: With an x-polarized field direct transi-
tions from a state |i) to another state | f) occur only between
states of opposite x parity, and thus a one-photon transition
from the ground state is allowed only to the |e, —) and
lion, —) states, as indicated in Fig. 1. We now explore
whether such transitions can be obtained with unit proba-
bility at intensities high enough to secure fast transitions,
but without exciting nonresonant transitions. Furthermore,
we seek a complete transition from the ground state to a
configuration where both electrons occupy either the left or
right dot, using a combination of different pulses. The
dynamics will be governed by the time evolution of the
coefficients of Eq. (4), ¢;;(r) = —izi/j/c,-/jr(t)(i’j’llfllij}.
The dynamics calculations with n .« =4 and n, . =
14 were thoroughly checked for convergence. The theo-
retical analysis and demonstration below based on the
harmonic potential is in the present context restrictive since
anharmonicity in general will yield a less regular energy
spacing [16]. This would lower the probability for “un-
wanted” excitations higher up in the spectrum, and thus act
as a restoring force for quantum control [17].

The upper panel of Fig. 3 displays the population trans-
fer from the initial |g, +) state and the |e, —) state for a
pulse of the form of Eq. (3). The frequency is tuned to the
energy difference of the two states, w; = 1.5 THz. The
envelope function is f; = sin? (Tﬂl t). A complete two-level-
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FIG. 3 (color online). Upper panel: Controlled transition from
the ground state to the first excited state, |g, +) — |e, —) with
w; = 1.5 THz and I; = 0.39 W/cm? (solid line). The dashed
curve shows the transition using an optimized pulse. Lower
panel: Time development of a few selected states for the same
pulse as above with intensity /; = 3.86 W/cm?. The population
shown is for the ground state (thick dashed line), second excited
state (thick solid line), 7th excited state (dash-dotted line), 11th
excited state (thin solid line), and 24th excited state (dotted line).

like transition is achieved with interaction time 7; =
237 ps (15 cycles).

The pulse applied above is rather simple, using a single
frequency and a standard envelope function. More com-
plex, nonintuitive pulses that are specifically designed for a
certain target state might have better performance in terms
of higher fidelity and shorter transition times. For the
purpose of obtaining such tailored pulses, optimal control
theory has had great theoretical success in recent years
[18,19]. To explore the usefulness of control theory in the
present context, we have applied Krotov’s algorithm [18]
to optimize the transition to the first excitation band. The
algorithm aims to maximize [(W(T)|e, —)|> while mini-
mizing the laser energy. The result of the calculation is
given in Fig. 3, showing complete transition within half the
original transition time. Speedups of 2—10 times that of
conventional pulse durations needed for complete transi-
tions were recently demonstrated for one-electron quantum
dot systems [20,21]. In the present Letter we focus on
physical mechanisms and simple pulses. However, even
faster transitions may be achievable with more sophisti-
cated polarization optimized pulses [22].

The lower panel of Fig. 3 displays the sensitivity to field
intensity in the present system, showing a few of the most
prominent components of the wave function during the
pulse. Increasing the pulse amplitude by a factor of 10

connects nearly all states, and we obtain an irregular time
development with significant projection on a large num-
ber of states. The system becomes highly excited and only
~54% of the wave function is represented by the 50 lowest
states. The high intensity of the field causes a broadening
of the absorption lines (saturation), and the transition
probability for even far off-resonant states may become
sizable. Indeed an estimate of the width at half maximum
of the resonance corresponding to a single photon reso-
nance, I' = 2E(i|x; + x,|j) [23], reveals non-negligible
probabilities for nearly all allowed transitions in the spec-
trum. In this case the dynamics is composed of many indi-
vidual step transitions originating from the ground state
and cannot be accurately described within simple models.

Proceeding to charge transport we observe that, from the
analysis of the spectrum in Fig. 2, a charge localized state
can be realized by an equal linear combination of the two
ionic states, |ion, =),

1 X .
|Wers) = —= (e +lion, +) + e E-"*Vlion, —)), (8)

V2

where v is an arbitrary phase difference. The two electrons
will oscillate between being localized in the left and the
right dot, with a period of 180 ps given by the energy
difference of the two ionic states. Based on the ability to
exclusively populate single states in the first excited band
we seek to coherently populate the charge localized state
using a combination of three tailored pulses. As previously
noted, the state |ion, +) can be reached via an intermediate
transition through the second energy band. The state given
by Eq. (8) is thus created by applying the first pulse to
transfer 50% of the ground state to the second excited state.
The second pulse further transfers the population in state
le, =) to the lowest ionic state |ion, +). The last pulse
transfers the remaining 50% from the ground state to the
upper ionic state |ion, —). In the upper panel of Fig. 4 we
show the sequence of pulses applied to the system which
initially is in the ground state. The pulses, labeled I, II, and
I11, have intensities I; = 0.39 W/cm?, I;; = 0.39 W/cm?,
and Iy = 5.43 W/cm? and durations T; = 127 ps, Ty =
225 ps, and Typ = 500 ps. The frequencies are w; =
1.5 THz, wy = 1.0 THz, and wyy = 2.5 THz. The first
and second pulses have envelope (1) = sinz(% 1), whereas
for the third pulse we have used a sin?> ramp-on of 10
cycles. At the end of the three pulses we have populated
the charge localized state with 98% probability. We expect
that this can be further increased by optimizing the pulse
parameters.

In Fig. 4 we observe an interference between the states
|g, +) and |e, —) during transition II and even larger os-
cillations between the |ion, =) states in III. The interfer-
ence envelopes (beats) in, for instance, the nonresonant
transition between the strongly coupled [ion, *) states is
due to the nonzero initial population of the state |ion+).
The nonresonant transitions in II and III are transient
during the pulse(s) and do not affect the final state proba-
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FIG. 4 (color online). Population of states during the sequence

of pulses. The duration of the individual pulses is indicated by
dashed vertical lines. The thin dashed line is the ground state
population. The thick dotted line is the population of the excited
state |e, —). The two lines that exhibit beats during pulse III are
the population of the states |ion, +) (upper) and |ion, —) (lower).
Upper panel: iw = 1 meV and d = 130 nm. The inset shows
the last transition modeled by a four-level system. Middle panel:
hw =3 meV and d =60 nm. Lower panel: Single-particle
probability density for the field free propagation of the charge
localized state at t =0, t = 1/4T¢g and t = 1/2T¢ 5. The
period is Tcrg = 180 ps.

bilities. The dynamics during the third pulse (III) is fairly
accurately modeled using only the four states, |g, +),
le, —), and |ion, *), as shown in the inset panel of Fig. 4.

In the middle panel we show the above described pro-
cedure applied to a system with stronger confinement
strength, 7w = 3 meV, and interdot separation d =
60 nm. The field parameters here are I; = 12 W/cm?,
Iy =3 W/cm?, and Iy = 7 W/cm? and durations Ty =
11 ps, Ty = 28 ps, and Ty = 50 ps. For the latter system
we are able to use field amplitudes of about one magnitude
greater than in our original system and thus reach the
desired charge localized state a factor of 10 faster. In the
lower panel we display the one-electron density for one
half-cycle oscillation of the charge localized state. As
expected we see a charge interchange between the two
dots with period 180 ps. The fact that the |ion, *) are not
the exact asymptotic states can be seen from a remaining
probability for the electrons being in opposite dots even at
maximum localization. This is visible as two weak dots on
the right (left) in the first and last frames.

In conclusion, we have demonstrated controlled state to
state transition in the strong coupling regime based on an
exact numerical solution of the two-electron Schrodinger
equation. We have shown that monochromatic microwave
pulses with simple envelopes can drive the system between
selected initial and final states. Further improvements of
fidelity and transition times were achieved by employing a
simple optimal control technique, which indicates that
more general control schemes can improve the transition
times even further. An oscillating charge localized state
was produced using a robust three-step scheme to populate
the two lowest entangled ionic states. Such charge oscil-
lations can, in principle, be experimentally detected in
quantum point contact devices and provide experimental
information on the electronic structure of the double dot
system [24,25]. The ability to control and detect the elec-
tronic properties is not only of fundamental interest, but is
a prerequisite for effective optically based quantum infor-
mation systems.
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