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We argue that the unscreened Coulomb interaction in graphene provides a positive, universal, and
logarithmic correction to scaling of zero-temperature conductivity with frequency. The combined effect of
the disorder due to wrinkling of the graphene sheet and the long-range electron-electron interactions is a
finite positive contribution to the dc conductivity. This contribution is disorder strength dependent and
thus nonuniversal. The low-energy behavior of such a system is governed by the line of fixed points at
which both the interaction and disorder are finite, and the density of states is exactly linear. An estimate of
the typical random vector potential representing ripples in graphene brings the theoretical value of the
minimal conductivity into the vicinity of 4e2=h.
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Graphene, an atom-thick layer of graphite, has recently
defined a new frontier of condensed matter physics. Its
essential electronic property, inherent to the honeycomb
lattice formed by the carbon atoms, is that the low-energy
quasiparticle excitations can be thought of as being mass-
less Dirac fermions, which propagate with a Fermi velocity
of around three thousandths of the velocity of light. This
pseudorelativistic nature of the quasiparticle excitations
makes the electronic properties of graphene fundamentally
new in many respects [1]. When the chemical potential is
tuned to the Dirac point graphene provides a rare example
of a critical two-dimensional fermionic system [2]. In
contrast to its textbook bosonic equivalent [3], all suffi-
ciently weak interactions between electrons, including the
long-ranged Coulomb, are then irrelevant perturbations
[4,5]. The effects of electron interactions thus become
progressively less important as the system is probed at
lower frequencies and temperatures. One important con-
sequence of this ‘‘infrared freedom’’ is that the zero-
temperature dc conductivity of clean graphene is finite
and universal, and simply determined by its Gaussian value
of � � ��=2�e2=h [6]. Including scattering of impurities
in a self-consistent Born approach yields another, similar
in magnitude and still universal, value of �4=��e2=h
[2,6,7]. Localization corrections are also expected to set
in at very low temperatures [8] and thus further diminish
the conductivity. The actual measurements of graphene’s
conductivity, however, are in significant discord with these
results: experimentally, � � 4e2=h, and thus significantly
larger than all the theoretical values [1]. The origin of this
discrepancy is unclear at the moment, with several recent
works focusing on the role played by the extrinsic charged
impurities [9].

In this Letter we show that the long-range Coulomb
interaction between electrons in graphene provides the
leading correction to the Gaussian value of conductivity,
which is positive and by itself only logarithmically slowly
vanishing when frequency approaches zero. This suggests

that the origin of the observed unusually large conductivity
at the Dirac point may be intrinsic, and originate from the
Coulomb correction which is then effectively cut off by a
finite temperature, disorder, or size effects.

We consider a specific mechanism of such cutoff which
invokes a nontrivial interplay between long-range interac-
tions and disorder [10], the latter being presently provided
by the apparently unavoidable wrinkling of the graphene
sheet. The combination of the Coulomb interaction and the
random vector potential that may be used to represent such
ripples in graphene leads to a line of stable fixed points (see
Fig. 1). The finite zero-temperature dc conductivity, ob-
tained here from the Kubo formula, varies continuously
along the line and, most importantly, increases with the
increasing disorder strength. We provide the symmetry
arguments for the existence of the line of stable fixed
points, and extract the density of states at low energies.
A crude estimate of the typical parameters in graphene
gives a sizable correction to the Gaussian value already to
the lowest order in our calculation and significantly nar-

FIG. 1. The flow of the disorder strength � characterizing
ripples of the graphene sheet and the Coulomb coupling g at
weak couplings. Two effects are balanced at the attractive line of
fixed points that emanates from the Gaussian fixed point at the
origin. At the line the system exhibits linear density of states and
a finite nonuniversal dc conductivity.
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rows the gap that presently exists between the theory and
the experiment. Further implications of our theory and the
connections with the critical bosonic theories and related
theoretical results in literature are discussed.

The low-energy excitations in the vicinity of the Dirac
points at � ~K, � � �1 may be represented by two four-
component Dirac spinors �y� � ��

y
�"�x; ��;�

y
�#�x; ���.

��" is a two-component Grassmann field representing
the components of the electron with the third component
of its (real) spin up on the two sublattices of the honey-
comb lattice and with wave vectors near � ~K [11]. The
imaginary-time Lagrangian density for the interacting sys-
tem of quasiparticles in the presence of a random vector
potential representing ripples of the graphene sheet [6] is
then L � L0 � LC � LD, where

 L0 � ���
���@���

�; (1)

 LC � �ia
�
0

���
��0��

� � a
�
0

j ~rj
2g

a�0 ; (2)

and

 LD � �i� ���
��n��

�An�x� �
1

2�
A2
n�x�: (3)

Here the index � � 1; 2; . . . ; N labels replicas introduced
to average over disorder, � � 0, 1, 2, and n � 1, 2, and
f��; ��g � 2���. The summation over repeated indices is
assumed and the limit N ! 0 is to be taken at the end. The
integration over a0�x; �� reproduces the standard �g=jxj
electron-electron interaction, whereas integrating out the
static vector potential An�x� yields an alternative form of
LD [6]:

 

~LD �
�

2

Z
d�0�� ���

��n��
���x; ����0 ��	

�0�n�	
�0 ��x; �

0�;

(4)

which will be also used. For convenience, we have set @ �
e=c � vF � 1, where vF � 106 m=s is the Fermi velocity.
In this convention there are two dimensionless coupling
constants in the theory: the Coulomb interaction g �
2�e2=
@vF, and the strength of disorder �.

In analogy with the two-dimensional bosonic critical
systems [3], at T � 0 the conductivity at frequencies
well below the microscopic energy scale �=b in the units
of e2=h can be written in the scaling form as

 ��!� � F�b!; g�b�;��b��; (5)

where F�x; y; z� is a universal scaling function. The func-
tional dependence of g�b� and ��b� ensures the ultimate
independence of ��!� on the arbitrary factor b. We have
set all the irrelevant couplings to zero. Let us choose then
b! � �	 �, with � as an arbitrary scale. Then

 ��!� � F��; g��=!�;���=!��: (6)

If the couplings g��=!� and ���=!� flow to small values
as !! 0, one can expand the function F��; g;�� as

 ��!� � F��; 0; 0� � ug��=!� � w���=!�; (7)

to the first order in the two coupling constants. u and w are
constants. Kubo formula yields the value of the Gaussian
term F��; 0; 0� � �=2 in the continuum limit [6] [see also
Eq. (16) below]. In what follows we compute the remain-
ing two terms in the last expression.

Let us first obtain the cutoff-dependent couplings g�b�
and ��b�. Nonanalitycity in momentum of the second term
in LC implies that the flow of g with the change of cutoff
can be written exactly [10] as,

 

dg
d ln�b�

� �z� 1�g; (8)

with the dynamical exponent z fixed by the requirement
bz�1 � Z!=Zk. Z! and Zk are the wave-function and the
velocity renormalizations, respectively. To the first order in
both couplings one finds

 Z! � 1�
�

�
lnb; Zk � 1�

g
8�

lnb; (9)

in agreement with previous calculations [4–6,12,13]. At
g � 0, the disorder strength � is exactly marginal coupling
[6]. We have also confirmed this by an explicit calculation
to order �2 (Fig. 2). When g � 0, ��b� � �Z�=Z

2
k. Using

the form in Eq. (4) and computing the first diagram in
Fig. 2 then gives

 Z� � 1�
g

4�
ln�b�: (10)

Thus, as the ultraviolet cutoff in the theory is changed from
� to �=b, the Coulomb and the disorder couplings flow
according to the differential equations [12]

 

dg
d ln�b�

� g
�
�

�
�

g
8�
�O�g2;�2; g��

�
; (11)

 

d�

d ln�b�
� 0: (12)

Under renormalization the electron interaction may thus
both decrease or increase, depending on disorder.

Although the calculation has been performed here only
to the leading order, we suspect that Eq. (12) may in fact be

FIG. 2. The one-loop corrections to the disorder vertex in
Eq. (4). The dashed and wiggly lines stand for the scalar and
the vector field propagators, respectively. The last three diagrams
sum up to zero.
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exact. Without the last term in LD the rest of the (interact-
ing) Lagrangian L enjoys the symmetry under the time-
independent gauge transformation

 An�x� ! An�x� � @n��x�; ��
� ! ei���x���

�: (13)

This implies that the usual Ward identities hold and that the
polarization of the vector field An�x� is transverse. The
coupling �, which in LD appears as the inverse mass for
An�x�, should therefore not renormalize [14].

For completeness let us note that L is also symmetric
under the purely time-dependent gauge transformation

 a�0 �x; �� ! a�0 �x; �� � @�f
����; ��

� ! eif������
�;

(14)

which guarantees the preservation of the form of LC and is
ultimately responsible for Eq. (8) [3].

The conductivity to the first order in g and � may be
computed next. We couple the external electromagnetic
vector potential a minimally to Dirac fermions and choose
a � aê1, for example. Using the Kubo formula for the
replicated theory [15] and to the first order in the two
couplings we find

 F��i!; g;�� � IG�!� � gIC�!� � �ID�!�; (15)

where the Gaussian value is
 

IG�!� � 16�
d
d!

Z dq0d2q
�2��3

q2
1 � q

2
2 � q0�q0 �!�

q2��q0 �!�2 � q2�

�
�
2
�O

�
!
�

�
: (16)

To the first order in disorder only the self-energy diagram
contributes and yields a negative contribution
 

ID�!� � 64�
d
d!

Z d�d2kd2p
�2��5

���2 � p2�

��2 � k2���2 � p2�2



���!�
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1

6
�O

�
!
�

�
: (17)

Finally, the Coulomb contribution is
 

IC�!� �
d
d!

Z d2kd2p
�2��3

4k̂ � p̂
jk� pj�!2 � 4k2�




�
!2 � 4k2

!2 � 4k2 �
!2 � 4k � p
!2 � 4p2

�

�

�
25

48
�
�
8

�
�O

�
!
�

�
: (18)

Few comments are in order at this point. The derivatives
with respect to frequency in Eqs. (16)–(18), which are to
be taken for strictly positive frequencies, serve to subtract
the finite ! � 0 contributions to the integrals. These are
known to arise as the artifacts of the ultraviolet cutoff,
which violates gauge invariance. Second, in contrast to the
disorder contribution, the Coulomb term contains both the

self-energy and the vertex corrections, given by the first
and the second term in the curly bracket in Eq. (18),
respectively. While each of these two separately is loga-
rithmically divergent in the continuum limit �! 1, the
divergences cancel out exactly in the full expression for the
conductivity. The final result in Eq. (18) represents the
finite remnant left after this cancellation. Indeed, the can-
cellation of logarithms in the conductivity is to be ex-
pected: without it the field-theoretic result would not be
cutoff-independent, and would be physically meaningless.
The results in Eqs. (16)–(18) are universal numbers char-
acteristic of the continuum limit.

The last three expressions together with Eqs. (7), (11),
and (12) at finite disorder then give the dc conductivity

 ��0� �
�
�
2
� �4� ����O��2�

�
e2

h
; (19)

and nonuniversal. The result is larger than the Gaussian
value due to the positive Coulomb contribution at the line
of fixed points. Note that � in the last expression is the
same as the ‘‘bare’’ value of the disorder strength at the
microscopic scale.

In the ideal sample with � � 0, on the other hand,
solving the Eq. (11) and inserting into Eq. (7) yields

 ��!� �
�
2
�
���25=6� � ��

ln��=!�
�O

�
1

gln2��=!�

�
; (20)

in the limit !! 0. The bare value of g cancels out in the
second term. Electron interactions provide therefore the
leading universal logarithmic correction to scaling of con-
ductivity at low frequencies in this case. Similar logarith-
mic corrections arise in perturbative quantum chromo-
dynamics, for example.

To get an estimate of the size of the first-order correction
to conductivity in Eq. (19) we restore all the constants we
previously set to unity. For the dielectric constant of 
 � 6
we find g � 2 [16]. The conductivity is determined by the
bare value of disorder, not the interaction, however. The
disorder coupling can be written as �1=2 � ��=�0, where
�� � h�2 is the flux of the effective random magnetic field
h � @1A2 � @2A1 through the ripple of the average size �,
and �0 � @c=e is the flux quantum. Effective magnetic
field h can be estimated by assuming that the same random
magnetic field is responsible for the observed suppression
of weak localization in graphene [17]. Using h � 1T and
� � 30 nm [17] we find � � 2, and � � 3e2=h, to the
leading order. Clearly this is only a crude estimate and for
� of order one the higher-order terms in Eq. (19) need to be
included. It is encouraging, however, that the size of the
lowest-order correction is significant and in the direction
towards the experimental result. The latter result is a direct
and a nontrivial consequence of the unscreened long-range
Coulomb interaction in graphene. It may also be relevant
that the experimental observation of normal localization
properties in graphene seems to correlate with a lower
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minimal conductivity [18]. The present theory would natu-
rally account for this since both effects result from a low
value of �.

A limitation of our result should also be pointed out. We
have computed the T � 0, !! 0 conductivity along the
line of fixed points, whereas the measurements of the
minimal dc conductivity in graphene typically correspond
to the opposite, ! � 0, T ! 0 limit. While both conduc-
tivities at a fixed disorder � are expected to be universal,
the two numbers could in principle be different [19]. If the
results from the related critical bosonic theories with [20]
and without disorder [3,19] are of any guide, the latter
universal number may be expected to be only larger. Its
computation along the line of the fixed points at which both
the disorder and interactions are finite may be a nontrivial
task though.

Our result at � � 0 is in stark contrast to the recent
result in Ref. [21], where Coulomb interaction is claimed
to suppress the conductivity at low frequencies. We note
that this conclusion is in contradiction to the well-
established infrared irrelevancy of the Coulomb coupling
[4,5], which implies that the Coulomb interaction can only
provide corrections to the Gaussian conductivity, which
ultimately vanish in the dc limit. Furthermore, the result of
Ref. [21] is explicitly dependent on the cutoff in the Dirac
theory, which is completely arbitrary. In contrast, the can-
cellation of the two logarithmically divergent terms [22] in
Eq. (18) guarantees the renormalizability of our result. The
low-frequency conductivity we computed is consequently
perfectly cutoff independent to the order of our calculation,
as it has to be if the picture of Dirac quasiparticles is to
remain physically meaningful in presence of the
interactions.

Finally, let us address the density of single-particle
states: N�!� / !�2�z�=z, just as at the unstable line at g �
0. Since g � 0 however, Eq. (8) implies z � 1 at the stable
line. The density of states is thus exactly linear, in contrast
to the g � 0 line.

To summarize, our main finding is that the lowest-order
combined effect of electron interactions and rippling in
graphene is to increase its minimal dc conductivity in a
nonuniversal, disorder-dependent fashion. A testable pre-
diction of our theory would be a decrease of minimal
conductivity in graphene with the suppression of wrin-

kling, which, incidentally, should also bring back the usual
localization behavior at finite density.
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