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We consider a set of mobile agents in a two dimensional space, each one of them carrying a chaotic
oscillator, and discuss the related synchronization issues under the framework of time-variant networks. In
particular, we show that, as far as the time scale for the motion of the agents is much shorter than that of
the associated dynamical systems, the global behavior can be characterized by a scaled all-to-all Laplacian
matrix, and the synchronization conditions depend on the agent density on the plane.
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Synchronization of chaotic oscillators, i.e., the regime in
which two or more chaotic oscillators evolve following the
same chaotic trajectory despite their different initial con-
ditions, is a very interesting dynamical behavior studied
under many points of view [1]. A case of particular rele-
vance in biophysics, neuroscience, and technology is when
the chaotic oscillators are the nodes of a complex network
[2] and the edges represent the coupling among them. The
conditions under which N identical oscillators (coupled by
an arbitrary network configuration admitting an invariant
synchronization manifold) can be synchronized have been
unravelled in [3] by linearization of the network dynamics
around the synchronization manifold.

In [3] the dynamics of each node is modeled as _xi �
F�xi� � K

P
jgijH�x

j� where i � 1; . . . ; N, xi is a
m-dimensional vector of dynamical variables of the ith
node, _xi � F�xi� represents the dynamics of each isolated
node, K is the coupling strength, H: Rm ! Rm is the
coupling function and G � �gij� is a zero-row sum N �
N matrix modeling network connections (i.e., the
Laplacian of the network).

According to the analysis of Pecora and Carroll [3], a
block diagonalized variational equation of the form _�h �
�DF� K�hDH��h represents the dynamics of the system
around the synchronization manifold; where �h is the hth
eigenvalue of G, h � 1; . . . ; N. DF and DH are the
Jacobian matrices of F and H computed around the syn-
chronous state, and are the same for each block. Therefore,
the blocks of the diagonalized variational equation differ
from each other only for the term K�h. If one wants to
study synchronization properties with respect to different
topologies, the variational equation must be studied as a
function of a generic (complex) eigenvalue �� i�. This
leads to the definition of the master stability equation
(MSE): _� � �DF� ��� i��DH�� .

The maximum (conditional) Lyapunov exponent �max of
the MSE is studied as a function of � and �, thus obtaining
the master stability function (MSF), i.e., �max � �max���
i��. Then, the stability of the synchronization manifold in
a given network can be evaluated by computing the eigen-

values �h (with h � 2; . . . ; N) of the matrixG and studying
the sign of �max at the points �� i� � K�h. If all eigen-
modes with h � 2; . . . ; N are stable, then the synchronous
state is stable at the given coupling strength. If G has real
eigenvalues, the MSF can be computed only as function
of �.

The MSF formalism allows us to study how the overall
topology of networks influences the propensity to synchro-
nization. Specifically, it gives a necessary condition (the
negativity of all Lyapunov exponents transverse to the
synchronization manifold) for the stability of a complete
synchronization process. With this approach, both hetero-
geneous and homogeneous networks, scale-free and small-
world topologies, weighted and unweighted networks have
been studied [2]. Only recently, the case of complex net-
works with links which do evolve in time has been con-
sidered [4–6].

In this Letter we consider the case of mobile agents, each
one associated with a chaotic oscillator coupled with those
of the neighboring agents. This situation, indeed, can be
considered as a good representation of problems like clock
synchronization in mobile robots, in which the communi-
cation is limited by the range of the communication system
[7], or task coordination of swarming animals which are
not only able to coordinate their motion in the plane, but
also to react collectively and synchronously when sub-
jected to external threats or attacks, or the appearance of
synchronized bulk oscillations in a suspension of yeast
cells, which has been experimentally observed for suffi-
ciently high cell density [8].

In this Letter we adopt the constraint of fast switching
[4,5] to derive synchronization conditions which relate
synchronization to a scaled all-to-all Laplacian matrix
and to the parameters describing the agent motion (for
instance, density of agents). We also study how the system
scales as the number of agents is varied. The results
obtained do not rely on the quite restrictive hypothesis of
commutative graphs [6].

We consider N moving individuals distributed in a pla-
nar space of size L with periodic boundary conditions.
Each individual moves with velocity vi�t� and direction
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of motion �i�t� [v being the modulus of the agent velocity,
which is the same for all individuals]. In our model, the
agents are random walkers whose position and orientation
are updated according to
 

yi�t��tM� � yi�t� � vi�t��tM;

�i�t��tM� � �i�t��tM�;
(1)

where yi�t� is the position of the ith agent in the plane at
time t, �i�t� are N independent random variables chosen at
each time with uniform probability in the interval [�	, 	],
and �tM is the motion integration step size. The choice of
random walk is motivated by the numerous examples of
real systems which can be modeled through random walk
(for example, living cells in a fluid [9], mobile robots
performing exploration tasks [7], and social systems [10]).

In addition, to include the possibility that individuals can
move through the bidimensional world with shorter time
constants (as in some social system models [10]), we
consider the case that individuals may perform long-
distance jumps. This is accounted for by defining a pa-
rameter pj that quantifies the probability for an individual
to perform a jump into a completely random position. In
summary, at each time step, each agent evolves following
Eqs. (1) [with vi�t� � �v cos�i�t�; v sin�i�t��] with proba-
bility 1� pj or performs a jump with probability pj. In the
latter case the agent position is updated into a new position
chosen at random in the plane in which agents move.

Furthermore, a dynamical system, and, in particular, a
chaotic one, is associated to each agent. Each agent is then
characterized by a state variable vector xi�t� 2 Rn which
evolves according to a given chaotic law. In the following,
without lack of generality, we consider the case of Rössler
oscillators, where the state dynamics of each agent is
described by _xi1 � ��x

i
2 � x

i
3�; _xi2 � xi1 � ax

i
2; _xi3 � b�

xi3�x
i
1 � c� with xi�t� � �xi1�t� x

i
2�t� x

i
3�t��

T . The following
parameters have been used: a � 0:2; b � 0:2; c � 7.

Each agent interacts at a given time with only those
agents located within a neighborhood of an interaction
radius, defined as r [7,11,12]. When two agents interact,
the state equations of each agent are changed to include
diffusive coupling with the neighboring agent, acting on
the state variable x1. Based on these assumptions, the state
dynamics of each agent can be described in terms of the
following equations:

 

_xi � F�xi� � K
PN
j�1 gij�t�Exj (2)

for i � 1; . . . ; N with F: R3 ! R3 given by the Rössler
dynamics,

 E �
1 0 0
0 0 0
0 0 0

2
64

3
75;

and gij�t� are the elements of a time-varying matrix G�t�
which defines the neighborhood of each agent at a given
time t and depends on the trajectory of each agent. More in

detail, gij�t� � gji�t� � �1 if the ith agent and the jth
agent are neighbor at time t; and gii�t� � h where h is
the number of neighbors of the ith agent at time t.
Equations (2) are integrated with a fixed time step defined
as �ts (in all the simulations �ts � 0:001).

We first study the behavior of the system under the
constraint of fast switching as defined in [13]. Stilwell
et al. consider a time-varying network topology of coupled
chaotic oscillators and describe the synchronization prop-
erties of the system by means of the time-average of the
coupling matrixG�t�. The main result discussed in [13] can
be expressed as follows: if the set of coupled oscillators
defined by _xi � F�xi� � K

PN
j�1 �gijExj (with fixed topol-

ogy �G � � �gij�) admits a stable synchronization manifold
and if there exists a constant T such that 1

T

R
t�T
t G�
�d
 �

�G, then there exists "	 such that for all fixed 0< "< "	 the
set of coupled oscillators defined by _xi � F�xi� �
K
PN
j�1 gij�t="�Exj [i.e., coupled through a time-variant

network G�t="�] also admits a stable synchronization
manifold. According to [13] this implies that, if the
time average of the coupling matrix G�t�, defined as �G �
1
T

R
t�T
t G�
�d
, supports synchronization of the whole sys-

tem and if the switching between all the possible network
configurations is sufficiently fast, then the time-varying
network will synchronize.

For the sake of simplicity, let us first consider the case of
two agents, i.e., N � 2. In this case, two network configu-
rations are possible only at each time t, since the two
agents can be neighbor or not. Under the constraint of
fast switching, we can make the approximation of analyz-
ing the synchronization properties inherited by the time-
average matrix �G given by �G � pAGA � p0G0, where pA
is the probability that the two agents are neighbor (all-to-
all coupling), while p0 is the probability that the two agents
are not neighbor, and

 GA �
1 �1
�1 1

� �

and

 G0 �
0 0
0 0

� �

are the corresponding N � N coupling matrices. Since
G0 � 0, �G is given by �G � pAGA.

Thus, pA plays the role of a coupling parameter. Since
the agents have random starting positions, under static
conditions the probability that the two agents are neighbor
(i.e., agent 2 is within the interaction radius r of agent 1) is
given by pA � 	r2=L2. Under dynamic conditions [i.e.,
when the two agents move following Eqs. (1)] there are
fluctuations around this value whose amplitude depends on
v. Under the hypothesis of large v very small fluctuations
are observed.

It can be shown that a similar result, namely �G � pGA,
also holds for N > 2, where GA is the N � N all-to-all
coupling matrix. In fact, in general, there will be more than
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two cases, depending on the possible configurations of the
neighborhood of N agents. For instance, for N � 3 there
will be eight possible configurations (since the agents are
numbered) which as shown in Fig. 1 can be classified into
four different cases. Therefore, we have �G � pAGA �
p0G0 � p12G12 � p23G23 � p13G13 � p1G1 � p2G2 �
p3G3 where all the matrices in the sum are N � N matrices
(N � 3), pA is the probability that all the agents are
neighbor (and GA the all-to-all coupling matrix), p12 is
the probability that 1 is close to 2, but 3 is not close to
either 1 or 2 (and G12 is the matrix which corresponds to
this case), p1 is the probability that 2 is close to 1 and 3 is
close to 1, but 2 and 3 are not neighbors (and G1 is the
matrix which corresponds to this case), and so on. By direct
calculation it can be observed that G12 �G23 �G13 � GA

and G1 �G2 �G3 � 2GA. Since p12 � p13 � p23 and
p1 � p2 � p3, �G � pAGA � p12�G12 �G23 �G13� �
p1�G1 �G2 �G3� � �pA � p12 � 2p1�GA and thus �G �
pGA. The same considerations can be repeated for N � 3.
In a certain sense �G is a kind of rescaled all-to-all matrix.
In analogy with the case of blinking networks [4], it can be
shown that p is the probability that a link is activated (i.e.,
that two agents are neighbor) and thus p is given by p �
	r2=L2.

By taking into account that � � N=L2, it can be derived
that p depends on the density � as p � 	r2�=N.
Furthermore, �G � 	r2�

N GA. This relationship and the
MSF allow us to derive the conditions under which the
agents can be synchronized. To do this, the N eigenvalues
of the coupling matrix �G are calculated. They are �1 � 0
(since �G is zero-row sum) and �i � pN for i � 2; . . . ; N.
Let us define � as � � pN.

Let us consider a typical type III MSF (i.e., a system for
which stability of the synchronization manifold is guaran-
teed only in a given interval [�1,�2] [2]) and let us suppose
that K� 2 ��1; �2�. Since 0< p< 1, this means that there
is a critical value of p (pc �

�1

KN ) so that if p < pc the two
agents will not synchronize and, on the opposite, if p > pc

the two agents will synchronize. In terms of the density of
agents, we can conclude that there exists a critical thresh-
old such that for � > �c �

�1

	r2K agents do synchronize.
In the opposite case, i.e., if K�> �2, the system will

behave in a different way: in this case, the agents will
synchronize at densities such that �1

	r2K
� �c1 < �< �c2 �

�2

	r2K . As it can be noticed pc depends on the number of
agents N, but �c, �c1, and �c2 do not depend on N.

To verify that the critical value of the density does not
depend on the number of agents, and to support the validity
of the approximations made in the above analytical treat-
ment, we carried on simulations of the full system at
different densities and with different values of N (N � 2,
N � 10, and N � 100). The other parameters have been
fixed so that fast switching is achieved (v � 1, pj � 0,
�tM � �ts � 10�3). We considered both identical and
nonidentical agents and we averaged the results of the
simulations over 50 different realizations. In the case of
nonidentical agents, for each agent we fixed a different
value of the parameter c in the interval [6.9, 7.1], so that
each system has a chaotic behavior.

For the analysis of the simulation results, we de-
fined the following synchronization error: ��t� �PN
i�2

�jxi1�x
1
1j�jx

i
2�x

1
2j�jx

i
2�x

1
3j�

3�N�1� , and we defined h�i � h��t�i
as synchronization index, where the average is performed
on the interval [4T=5, T] (T � 500 s is the total length of
the simulation).

Figure 2 reports the results for K � 10 (which, for
Rössler oscillators, is such that K�> �2). In the case of
identical systems, as expected, for �1

	r2K � �c1 < �<
�c2 �

�2

	r2K
the index h�i is zero; this corresponds to com-

plete synchronization on a synchronization manifold. In
the case of nonidentical systems, a synchronization mani-
fold cannot be formally defined, and therefore the MSF
approach does not rigorously apply. We expect, however,
that, for �c1 < �< �c2, a synchronization motion will be
established where the difference between the states of the
systems will only slightly oscillate around zero. This is

FIG. 1 (color online). Possible neighborhood configurations
for N � 3 agents and corresponding Laplacian matrices.
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FIG. 2. Synchronization index h�i vs density � for identical
(continuous line) and nonidentical (dotted line) systems with
N � 2, N � 10, and N � 100. The coupling is fixed to K � 10.
The other parameters have been chosen as follows: �tM �
�ts � 10�3, v � 1, r � 1. Results are averaged over 50 realiza-
tions.
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confirmed in Fig. 2 where the corresponding values of h�i
are very close to zero. The transition from a synchronized
behavior to a nonsynchronized behavior is sharper in the
case of identical systems. It can be noticed that the critical
values of the density are quite independent of the number
of agents. This suggests that the real size of the system is
measured not by N but by the density of the agents.
Furthermore, it is interesting to note that the effect of
increasing the density is such that first the system synchro-
nizes and then, for larger values of density, the synchroni-
zation is lost. This is related to the assumption of a type III
MSF, whereas for type II MSF a single threshold is ex-
pected. The latter case may be pertinent to the experimen-
tal evidence in yeast cell populations where sustained
oscillations depend on a sufficiently high cell density [8].

We then analyzed how the other parameters of the
system, namely v, �tM, and pj, influence synchronization.
The system has two time scales: the motion integration step
size �tM and that associated to the dynamics of the chaotic
system. If we fix �tM to the smallest admissible value, i.e.,
�tM � �ts, then at each time step Eqs. (2) will be inte-
grated and a motion step will be performed according to
Eqs. (1). Otherwise, if, for instance, �tM is chosen to be
�tM � 
�ts, a motion step will be performed each 

integration step sizes of the dynamics equations (2). In
this latter case, the neighborhood of each agent will be
updated each 
 integration step sizes �ts, and thus the
switching between the possible network configurations
will be slower than in the case �tM � �ts. Thus, decreas-
ing �tM makes the switching between neighborhood con-
figurations faster.

Both increasing v and pj go in the direction of fast
switching. As v increases, the distance covered in each
motion step by the agents increases, making changes in the
coupling matrix G�t� more likely and the switching be-
tween possible network topologies faster. Similarly to the
effect due to increasing values of v, the presence of long-
distance jumps (i.e., pj � 0) also makes the switching
between the possible configurations faster and thus can
help synchronization when �tM is low and �c1 <�<

�c2. This is shown in Fig. 3 which reports the synchroni-
zation index h�i vs �tM for different values of pj and v
with � � 0:009. The density � has been fixed so that the
system is close to the transition for v � 1 and pj � 0. As
can be noticed for v � 0:1 and pj � 0 agents are not
synchronized, while increasing pj they do synchronize at
low values of �tM. For increasing values of pj synchroni-
zation may be achieved at higher values of �tM with
respect to the case of pj � 0. This is also more evident
for v � 0:1 than for v � 1, since the switching rate also
depends on v. Furthermore, we notice that obviously when
pj � 1 the behavior is independent of v.

In conclusion, we have studied theoretically and numeri-
cally synchronization in a group of mobile agents, showing
that a critical parameter is the density of the agents. When
the density is kept constant, the behavior seems indepen-
dent of the number of agents N. This study relates the
system behavior to the properties of the dynamical network
underlying the system. We have also shown that the veloc-
ity of the agents and the presence of long-distance jumps
may help the onset of synchronization by increasing the
switching rate between possible network configurations.
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FIG. 3 (color online). Synchronization index h�i vs �tM for
different values of pj and v (identical systems). The other
parameters have been fixed as �ts � 10�3, N � 100, � �
0:009, K � 10. Results are averaged over 50 realizations.
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