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The conditions for observing Fano resonances at elastic light scattering by a single finite-size obstacle
are discussed. General arguments are illustrated by consideration of the scattering by a small (relative to
the incident light wavelength) spherical obstacle based upon the exact Mie solution of the diffraction
problem. The most attention is paid to recently discovered anomalous scattering. An exactly solvable one-
dimentional discrete model with nonlocal coupling for simulating diffraction in wave scattering in
systems with reduced spatial dimensionality is also introduced and analyzed. Deep connections between
the resonances in the continuous and discrete systems are revealed.
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Introduction.—Light scattering by an obstacle is one of
the most fundamental problems of electrodynamics; see,
e.g., monographs [1,2]. Nowadays the interest in this prob-
lem has been increased even more owing to its numerous
applications in subwavelength optics, information process-
ing, nanotechnologies, and related fields [3]. Recent stud-
ies of resonance scattering by small particles with weak
dissipation rates (see, e.g., [4–6] and references therein)
have revealed new and unexpected features of this phe-
nomenon, including the inverse hierarchy of optical reso-
nances, complicated near-field structure, unusual fre-
quency and size dependencies, etc., allowing us to name
such a scattering anomalous. However, despite the high-
lighted peculiarities, the physical nature of both normal
(Rayleigh) and anomalous scattering is the same: the inci-
dent light excites localized electromagnetic modes in a
scattering particle [plasmons (polaritons)] oscillating
with the frequency of the incident wave !. The corre-
sponding oscillations of polarization of the particle result
in the emission of electromagnetic waves with the same
frequency ! which constitutes the scattered light. Reso-
nances in this picture correspond to the cases when !
occurs close to (the real part of) the eigenfrequency of
one of the localized modes.

The described picture looks analogous to the well-
known phenomenon of Fano resonances in quantum phys-
ics [7]. Though the Fano resonances in light scattering are a
popular issue, attention has been paid either to the micro-
scopic aspects of the scattering in simple plane geometry
[8], or to the scattering by a periodic array of particles
(holes in a slab) [9]. In contrast to that, in the present Letter
we focus on elastic light scattering by a single finite-size
particle. We uncover the basic features of the resonances
which are not obscured by cooperative phenomena. It also
allows us to inspect the scattering at any values of the

problem parameters including those corresponding to the
anomalous scattering and to clarify the important role of
the inverse hierarchy of resonances in the transformation of
Lorenzian (Breit-Wigner) resonance lines into typical Fano
profiles. The developed approach provides a natural and
simple explanation of certain ‘‘mysterious’’ features of the
anomalous scattering and related problems, such as, e.g.,
sharp changes in the scattering diagrams (from preferably
forward to backward) upon small changes in ! in the
vicinity of quadrupole resonance [10] and the absence of
analogous anomalies at the dipole resonance, a typical
asymmetric shape of certain resonance lines obtained in
the present Letter (see Fig. 1), and a symmetric, Lorenzian
shape of the others, etc.

We also introduce and study an exactly solvable one-
dimensional (1D) discrete model accounting for all main
features of the resonant light scattering by a small particle
and exhibiting distinctive Fano resonances. The model
simulates wave scattering in an array of coupled wave-
guides [11], photonic crystals [12], and related systems. A
remarkable similarity in the manifestation of the reso-
nances in all these cases helps us to reveal the fundamental
links between all such phenomena.

Light scattering by a small spherical particle.—Reso-
nant light scattering by a finite-size particle is accompanied
by a two-step transformation: incident plane wave!
localized resonant electromagnetic modes�s� !
scattered light. On account of the second step of this trans-
formation (radiative damping) the localized modes have
finite lifetimes, being actually quasilocalized even at zero
dissipation rate. Note, however, that as long as the scatter-
ing of a continuous wave is concerned, losses of energy by
the quasilocalized modes are exactly compensated by gain
from the incident wave. Then, amplitudes of the modes
become time independent.
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Another route for the incident light is just to bypass the
scatterer, as well as to excite (nonresonantly) localized
modes whose eigenfrequencies lie beyond the close vicin-
ity of !. Interference of the incident and reemitted light
generates a complicated near-field structure and may give
rise either to strong enhancement (constructive interfer-
ence) or strong suppression (destructive interference) of
the electromagnetic field. Analogy to the Fano resonances
of a quantum particle scattered by a potential with quasi-
discrete levels is straightforward. The two possible routes
for the incident light correspond to resonant and direct
(background) scattering, while the radiative decay of the
(quasi)localized modes is identical to tunneling from the
quasidiscrete levels.

Though the analogy mentioned is pretty general and
valid for any particle size and shape, for the sake of
simplicity in what follows we consider light scattering by
a small spherical particle described by the exact Mie
solution [1,2]. According to the solution for a plane polar-
ized wave propagating along the z axis with vector E
parallel to the x axis the intensities of waves scattered in
a given direction are described by the expressions

 S�s�
k
� I�s�

k
cos2’; S�s�? � I�s�? sin2’; (1)

where the subscripts indicate the corresponding polariza-

tion (relative to the incident wave). Up to a certain com-
mon multiplier quantities I�s� may be expressed as follows:
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Here � and ’ are the polar and azimuthal angles of the
spherical coordinate frame whose center coincides with
that of the particle and the z axis with the propagation di-
rection of the incident wave; P�1�‘ �cos�� stands for the asso-
ciated Legendre polynomial, P�1�

0

l �cos���dP�1�l �cos��=
d�cos��, scattering amplitudes al and bl may be written
in the following form:

 a‘ �
F�a�‘ �q; ��

F�a�‘ �q; �� � iG
�a�
‘ �q; ��

; (4)

and similar for b‘ with replacement F�a�,G�a� ! F�b�,G�b�,
where ��!� is the relative (with respect to the environment)
dielectric permittivity of the particle, q � kR, k stands for
the wave number of the incident wave in vacuum, and R for
the particle radius. As for F�a;b�, G�a;b�, they are expressed
in terms of the Bessel [Jl�1=2���] and Neumann [Nl�1=2���]
functions. The corresponding expressions are cumbersome
and may be found in Ref. [6]. The partial scattering
cross section (��‘�sca), is connected with a‘, b‘:

 ��‘�sca �
2�

k2 �2‘� 1��ja‘j2 � jb‘j2�: (5)

We remind the reader briefly of the results of the analysis
of the Mie solution (for more details see, e.g., [4] and
references therein). Optical resonances are defined by the
condition G�a;b�‘ �q; �‘� � 0. For a small particle (q� 1)
the condition G�b�‘ �q; �‘� � 0, regarded as an equation for
�‘, does not have any real solutions, while solutions of the
equation G�a�l �q; �‘� � 0 have the form �‘ � ��1�
‘�=‘�O�q2�. For nondissipating materials these solutions
determine the resonant frequencies !‘ through the depen-
dence ��!�. For weakly dissipating materials the roots of
the equation G�a�‘ �q;!‘� � 0 have small imaginary parts.
In this case the resonant frequencies are equal to the real
parts of the corresponding roots. Next, at q� 1 ampli-
tudes b‘ are small relative to a‘ and may be dropped.
Regarding F�a�, in this limit F�a�‘ � O�q2‘�1� and does
not vanish anywhere but at the trivial point � � 1; as for
G�a�, away from the close vicinity of the resonance fre-
quencies it is of the order of one. All together that results in
sharp optical resonances for ��‘�sca, with a typical symmetric
Lorenzian (Breit-Wigner) profile [13].

FIG. 1 (color online). An example of typical Fano resonance
profiles at elastic light scattering. Forward (blue or dark gray)
and backward (red or gray) scattering by a small spherical
particle calculated according to the exact Mie solution in the
vicinity of the quadrupole resonance; the profiles for I�s�

k
and I�s�?

are identical cf. Eqs. (6) and (7). The media and constants model
the sketch of experiment on the anomalous scattering proposed
in Ref. [17], namely, a colloidal potassium particle with radius
R � 6:2� 10�6 cm immersed in a crystal of KCl. The refractive
index of the crystal nKCl � 1:5; the dielectric permittivity of the
particle is approximated by the Drude formula: � �
1�!2

p=�!� i��!, where !p � 5:77� 1015 s�1 and � �
vF=R is determined by collisions of free electrons with the
particle surface; vF � 108 cm=s.
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However, such a profile is not always the case for I�s�
k;?.

Let us first discuss the nondissipative limit (Im� � 0).
Considering excitations of nonresonant modes as back-
ground scattering and bearing in mind the narrowness of
the resonance lines in this case [4] we obtain that the
corresponding nonresonant amplitudes a‘ � al0, where
al0 � �iF

�a�
‘ �q; ��=G

�a�
‘ �q; �� � O�q2l�1�, are purely

imaginary. Then, the dipole mode (‘ � 1) always plays
the dominant role in the background scattering.
Accordingly, in the vicinity of the dipole resonance the
intensity of the dipole scattering always remains large
relative to the contribution of the other modes. As a result
interference of the resonant scattering with the background
produces only small corrections to the resonant mode and
the profiles I�s�

k;?��� remain Lorentzian.
For higher order resonances with ‘ > 1, which are also

well pronounced in the nondissipative limit even for a
small particle [4], the situation is different qualitatively.
In these cases the resonance scattering arises from the
corresponding background, whose amplitude a‘0 is much
smaller than that for the background dipole mode (a10). As
� approaches �‘ the resonant amplitude rapidly increases
and becomes much greater than a10, reaching a maximum
at � � �‘ and decreasing back to a‘0 upon further change
of �. Thus, in the vicinity of �‘ there are two points (one to
the left, the other to the right of �‘) where ja‘j � ja10j.
Bearing in mind that passage of the resonance adds� to the
phase of the resonant mode it gives rise to the conclusion
that one of the equal-amplitude points should correspond
to the constructive, while the other to destructive interfer-
ence; i.e., an asymmetric Fano resonance profile should be
observed.

To illustrate this reasoning let us consider the vicinity of
the quadrupole resonance (‘ � 2). Taking F�a�1;2, G�a�1 at
! � !‘, employing expansions of the functions in powers
of q [4], and additionally expanding G�a�2 in powers of
�� � �� �2 [we remind the reader that G�a�2 �q; �2� � 0]
one obtains the following approximate expressions for I�s�:

 I�s�
k
/

��������iq3 cos��
q5 cos2�

2�q5 � 12i���

��������
2
; (6)

 I�s�? /
��������iq3 �

q5 cos�

2�q5 � 12i���

��������
2
: (7)

There are two characteristic scales in Eqs. (6) and (7),
describing (i) a sharp resonant line shape centered at �� �
0 with the width � � q5=6 [14] and (ii) practically full
suppression of the scattering which occurs at much greater
scale: ��k � �q2 cos2�=24 cos� and ��? �
�q2 cos�=24, but still inside the resonance region
(j��k;?j � 1). Note also that there is a change of sign of
��k;? with variation in � shifting the annihilation point
from one side of the resonance peak to another through
vanishing of the corresponding I�s�.

Finite dissipation and/or increase in q broaden the reso-
nances. It results in the overlap of resonance lines of
different orders, which eventually may produce very com-
plex profiles. Nevertheless the phenomenon remains quali-
tatively the same as long as the dissipation is weak. Profiles
of forward and backward scattering, calculated for a po-
tassium nanoparticle immersed in a KCl crystal, are pre-
sented in Fig. 1 as an example. The calculations are
performed for a realistic dependence ��!� fitting actual
experimental data. Note, that in accordance with Eqs. (6)
and (7) points of the destructive interference for the for-
ward (� � 0) and backward (� � �) scattering lie on
different sides of the corresponding resonant peaks [15].

One-dimensional model.—Next we study the resonant
wave scattering in systems with reduced spatial dimension-
ality. Numerous examples of such systems could be found,
e.g., in book [16]. Fano resonances exhibited by these
systems have exactly the same nature as those discussed
above. To verify it we consider a localized point defect
(modeling a scattering particle) in a simple 1D discrete
chain (modeling the environment) with the interaction
between nearest and next-to-nearest neighbor sites. The
nonlocal coupling is a fundamental feature of the model—
it provides a scattered wave with the possibility of bypass-
ing the defect which simulates diffraction.

The model is described by the following set of equations
(see also Fig. 2), where � stands for the electric field of
light and integer n labels the spatial sites:

 i
d�n

dt
�

X2

j��2

Cnn�j�n�j � 0; Cnn � !0�n0�n: (8)

All sites of the chain but a defect situated at n � 0 are
identical and the coupling is mirror symmetric (Cmn � Cnm).
Accordingly, Cnn	1 � 1, Cnn	2 � 	 for jnj> 2. As for the
defect, C0

	1 � 
, C0
	2 � 
	, where 	 and 
 are real

positive constants; !0 stands for the shift of the defect
intrinsic frequency with respect to that for the other sites of
the chain. The latter is set to zero (Cnn � 0 at n � 0).

The solvability condition for linear traveling wave solu-
tions [�
 exp�i!�t	 i�n�] in the defect-free region of
Eq. (8) results in the following dispersion relation:

 !� � 2�cos�� 	 cos2��; (9)

where � is a (quasi)wave number. To keep the one-to-one

ε

2 C2
0

C1
0

C1

C

FIG. 2 (color online). Schematic view of a discrete 1D chain
of sites with a defect described by Eq. (8). Solid and dashed lines
in the vicinity of the defect correspond to the background and
resonant scattering, respectively; see the text for more details.
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correspondence between !� and � from the nontrivial
range 0 � � � � we impose the restriction 	 � 1=4.

The defect-free region allows for another type of solu-
tions whose permitted frequencies cover the entire band of
those for Eq. (9): �2�1� 	� � !� � 2�1� 	�. These
solutions are obtained by assigning in Eq. (9) � � �	
ip; p � 0. They correspond to exponentially decaying in
space localized states.

To study the wave scattering by a defect in our toy model
we consider an incident wave with amplitude being equal
to one advancing from the left. Then, the corresponding
boundary conditions read

 �n � ei!�t
�
e�i�n � �1e

i�n � �2e
pn; n <�2


1e�i�n � 
2e�pn; n > 2;
(10)

where 
1 and �1, 
2 and �2 are the complex transmission
and reflection amplitudes of the propagating and evanes-
cent waves from both sides of the defect, respectively. The
transmission coefficient T is related to 
1 by the expression
T � j
1j

2.
The linear problem (8)–(10) is exactly solvable, but the

solution is extremely cumbersome. It is remarkable, how-
ever, that the expression for 
1 has a structure identical to
that of Eq. (4), namely

 
1��
F�
1�

F�
1� � iG�
1�
; ImF�
1� � ImG�
1� �0: (11)

Equation (11) is simplified drastically at small 	, 
, and
!0 under the additional restriction of weak coupling be-
tween the defect and the chain: 
2 � j!0	j. In this case

 
1 ’ �

2 � 	�!


2 � 	�!� i �!2
; �! 
 !� �!0: (12)

The corresponding T��!� has two scales: T��!� ! 1,
exhibiting a sharp spike with the linewidth � ’ 4
2 cen-
tered at �! � 0 (i.e., at !� � !0) while it vanishes at
much larger scale, at �! � �
2=	; cf. Eqs. (6) and (7).
Note transformation of T��!� into a Lorenzian profile with
reduction of the coupling to local at 	! 0.

To be certain that the obtained properties of T��!� are
related to the resonant excitation of the defect, we calculate
j�0��!�j

2. At the small 	, 
, and !0 it has a typical
Lorenzian profile (with the same linewidth � ’ 4
2) over-
lapping the spike of T��!�: maxj�0��!�j2 ’ 1=
2 is
achieved at �! ’ �4	
2 (4	
2 � �).

More extensive analysis of Eqs. (8)–(10) restricted only
by the constraint 	 � 1=4 does not add any qualitative
difference to the results discussed above, except for the fact
that the locations of resonant transmission and reflection
may be well separated in the frequency space.

Note, though the next-to-nearest site coupling is crucial
to the model, its generalization to more extended interac-
tions (provided the coupling constants become smaller
with increase in distance between the interacting sites)
gives rise just to small quantitative corrections to the model
characteristics.

Conclusions.—A deep connection between the light
scattering by a single finite-size obstacle and Fano reso-
nances in quantum physics has been revealed and illus-
trated by the analysis of the exact Mie solution and a 1D
toy model. The concept developed in the present Letter
may be generalized to more complicated problems, e.g.,
the scattering by a system of particles including coherent
backscattering and weak localization phenomena, scatter-
ing in a waveguide, etc. In each particular system, the
specific resonant states are different but all of them act in
the same way being described by similar physics.
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