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We study motion of small particles in turbulence when the particle relaxation time falls in the range of
inertial time scales of the flow. Because of inertia, particles drift relative to the fluid. We demonstrate that
the collective drift of two close particles makes them see local velocity increments fluctuate fast. This
allows us to introduce Langevin description for separation dynamics. We describe the behavior of the
Lyapunov exponent and give the analogue of Richardson’s law for separation above viscous scale.
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Motion of small particles in a fluid, due to random
molecular forces, is the subject of the classical theory of
Brownian motion. Scale separation between the particle
relaxation time and time scales of the forces allows to
introduce an effective Langevin description of the driving
force as white noise in time [1]. In contrast, here we
consider the situation where the random driving force
originates not from the microscopic motions, but rather
from the macroscopic turbulent motion of the surrounding
fluid [2]. The limit of the particle relaxation time much
larger than the characteristic time scales of turbulence
(very heavy particles) can be described as in the
Brownian motion case [3]. In the opposite limit, when
particle relaxation time is much smaller than the character-
istic time scales of turbulence (very large friction), par-
ticles follow the flow closely, and the two-particle disper-
sion—of interest to us here—is approximately the same as
for fluid particles. In this Letter we study the intermediate
case of heavy particles, where the relaxation time falls in
the range of flow time scales corresponding to the inertial
interval of turbulence. This precludes Langevin description
for the single-particle motion. However, for two particles,
because of their collective drift relative to the fluid, veloc-
ity increments determining the separation do vary fast.
This allows to introduce effective Langevin description
for the dynamics of separations. The description enables
us to establish several results, not employing a particular
model of turbulence.

Behavior of small inertial particles in turbulence has
received much attention lately [4–19]. This problem has
many applications including rain formation in clouds [4,5],
ocean physics [6], and engineering [7]. Theoretical study
of the problem mostly involved modeling turbulence by a
white noise in time, Gaussian velocity field, the so-called
Kraichnan model. Even in that case theoretical study is
rather difficult; analytic results were mainly obtained for
the one-dimensional case [8–10]. The limit of heavy par-
ticles, considered here for turbulence, was studied numeri-
cally for the Kraichnan model in [3,11]. For turbulence,
numerical studies of intermediate regime of moderately
heavy particles were performed in [12–14].

We consider the motion of a small spherical particle in
an incompressible, statistically steady, turbulent flow
u�x; t�. We assume that the drag force acting on the particle
obeys Stokes’ law. Designating the particle position and
velocity by x�t� and v�t�, Newton’s law reads

 

_x � v; _v � �
v� u�x�t�; t�

�
: (1)

Here � � �2=9���0=���a2=��, where �0 and a are the
particle density and radius, while � and � are the fluid’s
density and kinematic viscosity. We briefly review relevant
properties of u�x; t�, see, e.g., [2] for details. Velocity field,
excited at the integral scale L, fluctuates in a wide (inertial)
range of spatial scales �� l� L. The characteristic
velocity ul of fluctuations at a scale l is related to the
temporal scale tl by ultl=l� 1. At the viscous scale � we
have t� � �2=�. For moderate Reynolds numbers Re one
can use Kolmogorov theory (below K41) that gives ul �
��l�1=3, tl � ��1=3l2=3, and �� ��3=��1=4, where � is the
mean energy injection rate. Equation (1) is valid if �� a
and inertia-induced particle drift relative to the flow, de-
scribed by w�t� � v�t� � u	x�t�; t
, has small Reynolds
numberwa=� [15]. We shall consider t� � �� tL, which
implies that particles are heavy, �0=�� ��

2=a2���=t�� �
1, justifying the neglect of such effects as added mass in
Eq. (1) [15]. Beyond K41, quantities like � and w have
strong spatiotemporal fluctuations, and in that setup we
will refer to their local (in space and time) values on
statistically relevant events.

We first consider the drift velocity w. From Eq. (1), in
the steady state, w�0� �

R
0
�1 �

P
t u exp�t=��dt=�, where we

set x�0� � 0 and �Pt u � u	x�t�; t
 � u�0; 0� is the turbulent
velocity difference in particle frame. The latter is similar to
the Lagrangian difference �Lt u � u	q�t�; t
 � u�0; 0�,
where q�t� is a fluid particle trajectory obeying _q �
u	q�t�; t
 and q�0� � 0. As �Lt u, the increment �Pt u should
be, on a rough scale, a nondecreasing function of jtj,
growing at most as a power law. Then the integral for w
yields the order of magnitude estimate w� �P�u and we
also see that the characteristic time of variations of w is �.
Both w and particle acceleration a � _v � �w=� charac-
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terize velocity fluctuations with time scale � in the inertial
range. Let us consider the time averages hwni along the
particle trajectory x�t�. The usual phenomenology sug-
gests the existence of finite universal limits �n �
lim�!0 lim�!0 lnhwni= ln��=tL�, independent of the source
of turbulence, where �n=n � const due to intermittency
[2,20]. Introducing dimensionless constants An which can
depend on � and � only weakly, we have

 �nhani � hwni � Anu
n
L��=tL�

�n ;
���������
�=�

p
Re�n � �� tL;

(2)

where �n � 0 due to fluctuations of t� [2]. Statistics of a
was studied numerically for � & t� [12] and experimen-
tally for � < t� [17]. The acceleration flatness ha4i=ha2i2

was found to decrease with � at � & t� [12]. This fits
Eq. (2) giving ha4i=ha2i2 � �A4=A2���=tL��4�2�2 , where
�4 < 2�2 due to �0 � 0 and convexity of �n [2].

Equation (2) is analogous to h	�L�u
niq � BnunL��=tL�
	n

for
���������
�=�

p
Re
n � �� tL [2,20], where the time average is

along the fluid particle trajectory q�t�, rather than x�t�. Let
us show that �n � 	n and �n � 
n is expected (but not
An � Bn). In K41 this is automatic: both hwni and
h	�L�u


niq are determined by � and � only, and proportional
to ����n=2 by dimensional analysis, while �n � 
n � 0
(thus in K41 w�

������
��
p

). For general case, let us consider
the separation of inertial and fluid particles. The relative
velocity �v � v�t� � u	q�t�; t
 can be written as a sum of
the stationary process w�t� and �u � u	x�t�; t
 � u	q�t�; t
,
roughly growing with time: �v � w� �u. Then, as shown
by Olla in [16], there is a crossover: �v � w at jtj � � and
�v � �u at jtj � � (this result can be shown based on
explosive separation [18,21] ). In the latter regime the
separation is explosive and �u�t� � �Lt u [2,21], implying
�Pt u � j�Lt u� �uj � �Lt u at jtj � �. This gives �P�u�
�L�u which by w� �P�u produces w� �L�u. Since �L�u is
the characteristic velocity of turbulent fluctuations with
time scale �, the estimate just means that particles follow
only the flow fluctuations with time scales larger than � (in
particular v � u	x�t�; t
).

The local equality w� �L�u implies hwni � h	�L�u
ni. To
demonstrate �n � 	n it remains to show h	�L�u


ni �

h	�L�u

niq, not evident because of the particles’ tendency

to concentrate preferentially in specific regions of the flow
[4], thus performing biased sampling of the latter [12,17].
Yet the numerical evidence indicates at �� t� the bias is
of minor importance for the averaging [12]. Further, �L�u is
correlated in space over the scale l�, defined implicitly by
tl� � �, beyond which the preferential concentration is
expected to be small [14]. Then additional spatial averag-
ing of h	�L�u
ni over l� vicinity of x�t�, which preserves the
order of magnitude of h	�L�u
ni, washes out the effects of
preferential concentration, giving h	�L�u
ni � h	�L�u
niq.

We now consider two-particle motion. We assume the
particle separation R � x0 � x much larger than radius a,
so that hydrodynamic interactions between particles are

negligible. Then each particle satisfies Eq. (1), producing

 � �R� _R � �u�R�; �u�R� � u�x� R� � u�x�: (3)

At R� l� particle dispersion, driven by �u�R� � uR, is
determined by turbulent fluctuations slower than �, and
the separation is like for fluid particles: _R � v0 � v �
�u�R� � w0 � w � �u�R�, by w� ul� � uR. In contrast,
at R� l� dispersion laws peculiar for inertial particles
hold [note that in K41 l� � �1=2�3=2 � ���=t��3=2]. We
first treat R�t� � � where �ui�R� � Rjrjui	x�t�; t
 and

 � �R� _R � R 
 ru	x�t�; t
: (4)

Equation (4) describes the exponential growth of the dis-
tance p � �R; � _R� between two infinitesimally close tra-
jectories in the phase space of Eq. (1) (where the relative
particle velocity is also small cf. [10] ). The main charac-
teristic of the growth is the Lyapunov exponent �1 �
limt!1 ln	p�t�=p�0�
=t � h _p=pi. Below we study the de-
pendence of �1 on the Stokes number St � �turb

1 �, where
�turb

1 is the Lyapunov exponent of fluid particles, �turb
1 �

�1j��0. At physically relevant Reynolds numbers, K41
estimate �turb

1 �
���������
�=�

p
is valid [13], which means that the

events determining �1j��0 are but weakly intermittent.
Below we assume that �1 is determined by weakly inter-
mittent events also at finite �, and we use K41 for order of
magnitude estimates, justifying this later.

The main observation enabling us to analyze �1 is that
ru	x�t�; t
 in Eq. (4) is short correlated in time at St� 1.
To see this note that the time derivative of the velocity
gradient in the particle frame, ru	x�t�; t
, can be written as
the time derivative along the fluid particle trajectory plus a
spatial derivative due to the inertial drift:

 

d
dt
ru	x�t�; t
 � 	�@t � u 
 r� � w 
 r
ru: (5)

The term �w 
 r�ru�ru�w=�� produces characteristic
time of variations �=w� t�=

�����
St
p

. During this time the
particle drifts away from the carrying flow by the spatial
scale of variations of the velocity gradient �. At St� 1
this drift time scale is smaller than the time scale t� given
by the substantial derivative in Eq. (5). It follows that the
correlation time �c of ru	x�t�; t
 is t�=

�����
St
p

and it decreases
with St. On the other hand, the characteristic value of
ru	x�t�; t
, given by u�=�� 1=t�, is independent of St.
Thus at large St it should be possible to describe ru	x�t�; t

by a white noise. Such description, however, has a
subtlety—properties of local correlations of ru	x�t�; t

[such as the correlation time �=w�t�] depend on the slowly
changing parameter w�t�, and thus change at the time scale
� (notice that �� �c at St� 1). To incorporate this fea-
ture we first consider the evolution described by Eq. (4) at
time intervals shorter than �, where one can write x�t� �
q�t� � wt. Here w�t� � w and we set the observation mo-
ment at t � 0. We make a natural assumption (verified
below) that �turb

1 � �1 at St� 1. Since �1 � t� * �c,
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we find that the characteristic time of variations ofR, given
by ��1

1 , obeys ��1
1 � �c. Then averaging Eq. (4) over time

�t satisfying ��1
1 � �t� �c, we obtain �Ri � _Ri=� �

Rj �rjui=�, where �rjui�
R
t��t
t rjui	q�t

0��wt0;t0
dt0=�t.
We observe that �rjui is a sum of a large number
��t=�c of independent random variables and thus is
Gaussian. It is fully fixed by its mean (equal to zero)
and the pair correlation, which—due to stationarity,
spatial homogeneity of small-scale turbulence and in-
compressibility—is determined by Fijmn�w� �R
dthrjui�0; 0�rnum	q�t� � wt; t
iu. Here the averaging

is performed over the statistics of the turbulent velocity
u, assuming that w is just a constant vector: w�t� is deter-
mined by velocity fluctuations with tl * � so that the
statistics of the velocity gradients, determined by fluctua-
tions with time scale t� � �, are approximately indepen-
dent of the local value of w�t�. Then �rjui�t� is statistically
equivalent to

R
t��t
t �ij�w; t0�dt0=�t, where

 h�ij�w; t��mn�w; t0�i � ��t0 � t�Fijmn�w�: (6)

Dropping the auxiliary time averaging we find that the
evolution over times shorter than � can be described by
the anisotropic white-noise model � �R� _R � ��w�R.

To use the above reduction we need some results on the
Kraichnan model in which ru in Eq. (4) is modeled by the
white noise �̂ij obeying h�̂ij�t��̂mn�t0�i � D��t� t0�	�d�
1��im�jn � �ij�mn � �in�mj
, where d is the space dimen-
sion [6]. Here, passing to dimensionless time s �
D1=3t=�2=3, one finds �R� _R=�D��1=3 � �0�s�R, where
h�0ij�s1��

0
mn�s2�i � ��s1 � s2�	�d� 1��im�jn � �ij�mn �

�in�mj
 cf. [11]. At �D��1=3 � 1 one can drop _R=�D��1=3

obtaining the scaling law �1 � �0D1=3=�2=3 where �0 is
the dimensionless growth exponent of �R � �0�s�R. At
�D��1=3 � 1 all terms in the equation are of order unity
and though there is no scaling, the estimate �1 �D1=3=�2=3

still holds (this explains the numerical results of [3,11] ).
Thus �1 �D

1=3=�2=3 at D� * 1. For example, in d � 2,
~�1	�D���1=3
 � �1�2=3=D1=3 slowly varies from ~�1�1� �
0:5 to �0 � ~�1�0� � 2 [3], giving �1 � �0D1=3=�2=3 at
�D��1=3 � 1. We make an important remark that the
time scale beyond which h _p�t�=p�t�i relaxes to its steady-
state value �1, forgetting the initial conditions, can be
estimated as ��1

1 . Indeed, ��1
1 is the only time scale at

�D��1=3 � 1, while at �D��1=3 � 1 all coefficients in �R�
_R=�D��1=3 � �0�s0�R are of order unity so again
�2=3=D1=3 � ��1

1 is the only possible time scale.
We now return to Eq. (6) and introduce �1�w� as the

Lyapunov exponent for � �R� _R � ��w�R. At
�����
St
p
� 1

the latter model simplifies to the ordinary 2d Kraichnan
model. Here the drift time scale �c � t�=

�����
St
p

is much less
than t� and the right-hand side of Eq. (5) is dominated by
the last term. As a result, the change in ru	x�t�; t
 is
determined by the spatial variations of turbulence only
and one finds Fijmn�w� �

R
dthrjui�0�rnum�wt�i. A de-

generacy wnFijmn �
R
dt@thrjui�0�um�wt�i � 0 appears,

allowing to set �i3 � 0, where we chose z axis parallel
to w. As a result, r � �R1; R2� satisfies closed equation �r�
_r=� � ~�r=�, where ~� is a 2� 2 matrix with ~�ij � �ij.
Using hrjui�0�rnum�r�i � rjrnSim�r�=2, where Sij�r� �
h	ui�r� � ui�0�
	uj�r� � uj�0�
i, one can express Fijmn
with the help of second order structure function of turbu-
lence S2�r� � h�	u�r� � u�0�
 
 r=r�2i. A straightforward
calculation [18] shows that ~� has the statistics of �̂ in 2d
with D � D�w� � w�1

R
1
0 S2�r�=�2r2�dr [note D�w� �

�turb
1 =

�����
St
p

by w�
������
��
p

]. It follows that at
�����
St
p
� 1 one

has �1�w� � D�w�1=3 ~�1f	D�w��
�1=3g=�2=3. For any St *

1, like in the Kraichnan model, one finds �1�w� �
D1=3�w�=�2=3 � St1=6=�.

Now we can analyze �1 � limt!1h _p�t�=p�t�iu. We av-
erage h _p=piu over the statistics of turbulence in
two steps: first averaging over the statistics of the veloc-
ity gradients at fixed w�t� and then averaging over w�t�.
We note from the analysis of the Kraichnan model that
if ��1

1 �w� � � then the average h _p�t�=p�t�iru over the
statistics of the gradients is determined by the time inter-
val [t� ��1

1 �w�; t] shorter than �, for which Eq. (6) ap-
plies with w � w�t�. Thus h _p�t�=p�t�iru � �1	w�t�
 �
�0D1=3	w�t�
=�2=3, where we use for �1�w� the 2d
Kraichnan model expression at �1�w��� 1. Using the
expression for D�w� and averaging over w, we obtain

 �1 � G; for G � �0hw�1=3i

�Z 1
0

S2�r�dr

2�2r2

�
1=3
�

1

�
:

(7)

Since G� St1=6=� the limit above is St1=6 � 1. On the
other hand, at St1=6 � 1 one has ��1

1 �w� � �=St1=6 � � and
the time interval [t� ��1

1 �w�; t] is of order �, which is the
boundary of the applicability of the averaging over the
gradients using Eq. (6). Here we find only the order of
magnitude estimate h _p�t�=p�t�iru � �1	w�t�
 giving �1 �

h�1�w�i � St1=6=�. One can combine the results as

 �1=�turb
1 � St�5=6 for St * 1: (8)

The above says �1 can be estimated from the naive white-
noise model with D�

R
hru�0�ru�t�idt� ��turb

1 �
2�c. The

dependence of D on � brings faster decay of �1=�turb
1

than in the ordinary Kraichnan model. The use of K41
for estimates above is self-consistent: at realistic Re
(within multifractal model [2] Re * 1015) both hw�1=3i
and

R
1
0 S2�r�dr=r2 entering G are well described by K41.

We now consider the growth ofR in the inertial range, at
� & R� l�. In contrast to Richardson’s law for fluid
particles R�t� � �1=2t3=2 [2,21], K41 dimensional analysis
does not fix the separation law for inertial particles, due to
the additional time scale �. We shall assume moderate _R�0�
not to have mere ballistic motion, e.g., the analysis below
applies to R�0� � �, _R�0� � �1�, holding after separation
at R� �. As we will see, R�t� reaches l� within t� �, so
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to study separation at R�t� � l� we assume t� �. The
‘‘friction’’ term _R=� in Eq. (3) produces negligible effect
over t� � and it can be omitted giving � �R � �u�R� �
u	q�t� � wt� R�t�; t
 � u	q�t� � wt; t
, where w � w�0�.
The correlation time tc�R� of �u�R� is due to the drift,
tc�R� � R=w & tR. As we verify later, the time scale
�c�R� of variations of R obeys �c�R� � tc�R�. Then, like
in the viscous range, we may introduce Langevin descrip-
tion of �ui�R�, substituting it by white noise Dij�R��j,
where h�i�t��j�t0�i � �ij��t� t

0�. Here Dik�R�Djk�R� �R
dth	ui�R� � ui�0�
	uj�wt�R� � uj�wt�
i to provide the

correct dispersion of the time averaged �u�R� [18]. We
assumed for simplicity tR � R=w or �l�=R�1=3 � 1 (we
use K41 as at R� �), so that the time correlations of
�u�R� are determined by the drift (cf. to t� � �=w� �c
at R� �). The above Kraichnan model for particles is not
the same as used usually to model turbulence in the inertial
range [21]: tc�R� depends on R differently than tR. Noting
Dik�R�Djk�R� � S2�R�tc�R� � S2�R�R=w, we conclude
that the dependence on � and � in �Ri � Dij�R;w��j=� is

via a single parameter �2=3=w�2 � l1=3
� =�3. Now dimen-

sional analysis is enough to fix the answer. We find �c�R� �
��R=l��1=9, so the applicability condition �c�R� � R=w
gives �R=l��8=9 � 1, close to just R� l�. At t�
�c	R�0�
 the initial condition is forgotten (we assume ex-
plosive separation characteristic of the inertial range [21] )
and R�t� depends only on t and l1=3

� =�3 giving

 R�t� � l��t=��9; �c	R�0�
 � t� �: (9)

The above law is closer than Richardson’s law to the
exponential separation holding for smooth flows (cf. the
Kraichnan model for fluid particles where Richardson’s
law exponent grows indefinitely as the flow becomes less
rough [21] ). The smoothing is due to the effective time
averaging of the turbulent velocity difference �u�R� per-
formed by separating particles. As R�0� * �, the observ-
ability of the power law entails �� �c	R�0�
 * �c���.
This gives �l�=��1=9 � St1=6 � 1, equivalent to the natural
‘‘forgetting’’ condition ��1

1 � �. At St1=6 � 1, the time of
forgetting of the initial condition obeys �c	R�0�
 � � so
R�t� at t� � depends on the details of initial conditions.
Equation (9) then can be used as order of magnitude
estimate at t� � giving R��� � l�. This is expectable—
for fluid particles the time of separation to l� is of order �
and determined by the stage of evolution with R�t� � l�
where fluid and inertial particles behave similarly. Note
that St1=6 � 1 at �� tL demands a very large inertial
interval so the limiting case solution given by Eq. (9) is
mainly a theoretical device to understand the generic fea-
tures of the separation.

In summary, we studied the motion of inertial particles
in turbulence at St� 1. We showed that the particle drift
velocity grows with inertia as the Lagrangian velocity
increment of turbulence at time �. The Lyapunov exponent

�1 � �turb
1 =St5=6 can be estimated from the Kraichnan

model with �-dependent statistics. The analogue of
Richardson’s law in the inertial range � & R� l� is
R�t� � l��t=��9. The law, observable only at St1=6 � 1,
shows property expected at any St� 1: explosive separa-
tion to l� in t� �, closer than Richardson’s law to the
exponential separation holding for the smooth flows. The
analysis can be generalized to include gravitational accel-
eration g where one finds �1 � �1�w � g�� [18,19]. The
implications of the results on separation for the two-
particle distribution function (determining the preferential
concentration) are an interesting subject for future work.
Our main qualitative result is that collective drift of inertial
particles through the flow makes their relative motion
subject to Langevin description.
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