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We present an optical cavity QED configuration that is described by a dissipative version of the Lipkin-
Meshkov-Glick model of an infinitely coordinated spin system. This open quantum system exhibits both
first- and second-order nonequilibrium quantum phase transitions as a single, effective field parameter is
varied. Light emitted from the cavity offers measurable signatures of the critical behavior, including that
of the spin-spin entanglement.
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Remarkable advances with trapped, ultracold atomic
gases have opened up exciting new avenues of research
into strongly interacting many-body quantum systems [1].
Exquisite control of both motional and electronic de-
grees of freedom of cold atoms can enable one to ‘‘tailor’’
atom-atom interactions and thereby implement a variety of
systems that exhibit, in particular, quantum critical phe-
nomena, i.e., transitions between distinct quantum phases,
driven by quantum fluctuations, in response to variations of
an effective field or interaction strength around some criti-
cal value.

Recently, important insights into such transitions have
been obtained from theoretical studies of the quantum
entanglement properties of critical spin systems (see,
e.g., [2–10]). Bipartite entanglement measures character-
izing entanglement between a pair of spins (e.g., the con-
currence) or between two blocks of spins (e.g., the
entanglement entropy) can display marked critical behav-
ior and scaling at quantum critical points. In this context, a
simple but very useful example is the Lipkin-Meshkov-
Glick (LMG) model [11], which is described by the
Hamiltonian

 HLMG � �2hJz � �2�=N��J2
x � �J2

y�; (1)

where fJx; Jy; Jzg are collective angular momentum opera-
tors for N spin-1=2 particles, h and � are effective mag-
netic field and spin-spin interaction strengths, respectively,
and � 2 ��1; 1� is an anisotropy parameter. This system,
in which each spin interacts identically with every other
spin, exhibits critical behavior at zero temperature; in
particular, either first- or second-order equilibrium quan-
tum phase transitions may occur, depending on the choice
of � and �, as the ratio h=� is varied across a critical value
[6]. Notably, the second-order transition involves a change
from a unique ground-state (normal phase) to a pair of
macroscopically displaced degenerate ground states (bro-
ken phase). Entanglement in the system displays the
above-mentioned critical behavior, reaching, in particular,
a pronounced maximum at the critical point [5–7].

Given these interesting and topical features of the LMG
model, it follows that the physical realization of a system
described by such a model would provide a valuable test
bed for studies of quantum critical phenomena and entan-
glement. Here we propose an open-system (i.e., dissipa-
tive) version of the LMG model based on the collective
interaction of an ensemble of atoms with laser fields and
field modes of a high-finesse optical resonator. In the spirit
of a recent proposal for realizing the Dicke model [12], our
scheme employs Raman transitions between a pair of
atomic ground states and the relevant energy scales (e.g.,
h, �) are set by light shifts of the atomic levels and Raman
transition rates and detunings.

The open nature of this system, a consequence of the
external driving fields and cavity mode losses, introduces a
number of important differences from, and, arguably, ad-
vantages over, the closed, Hamiltonian LMG system:
(i) thermal equilibrium phase transitions are replaced by
dynamical, nonequilibrium phase transitions, (ii) the cavity
output fields offer quantitative measures of properties of
the collective-spin system, including entanglement, in the
critical regime, and (iii) it is possible to observe both first-
and second-order quantum phase transitions as a single
effective field parameter h is varied.

We consider N atoms coupled via electric dipole tran-
sitions to three laser fields and to a pair of independent
(e.g., orthogonally-polarized) optical cavity modes. The
atomic level and excitation scheme is shown in Fig. 1,
together with a possible ring-cavity setup. At the location
of the atoms, the cavity and laser fields are copropagating
traveling waves, with sufficiently broad beam waists so as
to ensure homogeneous atom-field couplings. These fields
combine to drive Raman transitions between two stable
electronic ground states of the atoms, j0i and j1i (energies
!0 � 0 and !1, respectively, with @ � 1) via the excited
atomic states jri and jsi (energies !r and !s). The laser
fields have optical frequencies !r0, !s0, and !r1, and
couple to the atomic transitions with Rabi frequencies
�r0, �s0, and �r1. Cavity field a, at frequency!a, couples
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to the transitions j0i $ jri and j1i $ jsi with strengths gr0
and gs1, respectively, while cavity field b, at frequency!b,
couples to the transitions j0i $ jsi and j1i $ jri with
strengths gs0 and gr1, respectively. As drawn in Fig. 1,
the level scheme would apply, e.g., to 6Li, with the ground
magnetic substates jF � 1=2; m � �1=2i as j0i and j1i
and a magnetic field perpendicular to the cavity axis to
provide a splitting !1 between these states. Modes a and b
would be orthogonal, linearly polarized cavity modes, with
mode a polarized along the direction of the magnetic field.

The atom-light detunings �r � !r �!r0 and �s �
!s �!s0 are taken to be much larger than any dipole
coupling strengths, atomic linewidths, or cavity loss rates.
This enables us to adiabatically eliminate the states jri and
jsi from the dynamics and neglect the effects of atomic
spontaneous emission. Additionally, as depicted in Fig. 1,
we assume that only three distinct Raman transitions are of
significance (i.e., resonant or roughly resonant); i.e., we
retain only those Raman processes that cause a change in
the electronic state of the atoms (j0i ! j1i or j1i ! j0i)
and also involve transfer of a photon from a laser field
to a cavity mode or vice-versa. All other possible Raman
processes are assumed to be far off-resonant and there-
fore negligible. Finally, taking the wave numbers of the
laser and cavity fields to be essentially equal, and intro-
ducing the collective-spin operators Jz �

1
2

PN
j�1�j1ji	

h1jj � j0jih0jj�, J� �
PN
j�1 j1jih0jj, and J� � �J��y, we

can derive a master equation for the cavity modes and
ground-state atoms in the form

 _� g � �i�Hg; �g� � �aD�a��g � �bD�b��g; (2)

where D�A�� � 2A�Ay � AyA�� �AyA, �a;b are the
cavity field decay rates, and (omitting constant energy
terms)
 

Hg � !0Jz � �aa
ya� �bb

yb� 2��a Jza
ya� 2��b Jzb

yb

�
�a����
N
p Jx�a� ay� �

�b����
N
p �J�b� J�by�; (3)

with Jx � �J� � J��=2 and

 

!0�
j�r1j

2

4�r
�
j�r0j

2

4�r
�
j�s0j

2

4�s
�!1�!

0
1; (4a)

�a�!a�!01�!s0�N��a ; (4b)

�b�!b�!01�!r0�N��b ; (4c)

��a �
jgs1j

2

2�s
�
jgr0j

2

2�r
; ��b �

jgr1j
2

2�r
�
jgs0j

2

2�s
; (4d)

�a�

����
N
p

�
r1gr0
�r

�

����
N
p

�
s0gs1
�s

; �b�

����
N
p

�
r0gr1
2�r

; (4e)

where !01 � �!s0 �!r1�=2 ’ !1, and we have assumed
the two Raman transitions involving mode a to occur at the
same rate �a.

We now assume ��2
i � �

2
i �

1=2 � �a, �b, !0. In this
limit, the cavity modes are only weakly or virtually excited
and may also be adiabatically eliminated to yield the
following master equation for the reduced density operator,
�, of the collective atomic system alone:

 _� � �i�H��0
LMG; �� �

�a
N
D�2Jx���

�b
N
D�J���; (5)

with h � �!0=2, � � 2�2
a�a=��

2
a � �

2
a�, and �i �

�2
i �i=��

2
i � �

2
i � (i � a, b). Note that in deriving (5) we

have also assumed that �b � �b ’ 0. If we then take �a �
�a and �a � �b, then the role played by each cavity mode
in relation to the atomic system is quite distinct.
Specifically, mode a mediates the collective-spin-spin in-
teraction (of strength � ’ �2

a=�a) associated with the
Hamiltonian dynamics, while mode b mediates the collec-
tive atomic decay (with rate �b ’ �2

b=�b).
The equations of motion for the moments

fhJxi; hJyi; hJzig, derived from (5), do not form a closed
set. However, factorizing the means of operator products
and taking the limit N ! 1 (i.e., neglecting quantum
fluctuations), we obtain a closed set of semiclassical equa-
tions,
 

_X � 2hY � �bZX; (6a)
_Y � �2hX � 2�ZX � �bZY; (6b)
_Z � �2�XY � �b�X

2 � Y2�; (6c)

where �X; Y; Z�  �hJxi; hJyi; hJzi�=j with j � N=2, and
X2 � Y2 � Z2 � 1 (conservation of angular momentum).
The stable steady-state solutions of (6) exhibit bifurcations
at two critical effective field strengths, hc� � ��� ��

2 �

�2
b�

1=2�=2 (we assume � > 0, �b). In particular, for h < hc�
and h > hc� the stable steady-state solutions are fXss �
Yss � 0; Zss � 1g, whereas for hc� < h< hc� one finds

 Xss � �

��������������������
�2 � 4h2

2��

s
; Yss �

�b
�
Xss; Zss �

2h
�
;

(7)

where � � �� ��2 � �2
b�

1=2. Note that at both (supercriti-
cal pitchfork) bifurcations a detailed stability analysis [13]
shows that a unique steady state becomes unstable and two

FIG. 1. (a) Atomic level and excitation scheme. (b) Potential
ring-cavity setup. The laser fields (dashed lines) are at frequen-
cies that are not supported by the resonator, but can be injected
through one of the resonator mirrors so as to be copropagating
with the cavity fields through the ensemble.
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new stable steady states emerge. These semiclassical solu-
tions, together with numerical solutions of the finite-N
master Eq. (5), are plotted in Fig. 2 as a function of h=�
(note that hJxi � hJyi � 0 for the finite-N calculations).
The plots indicate both a first- and second-order phase
transition as a single parameter h is varied. The first-order
(second-order) transition, at h � hc� (h � hc�), involves a
discontinuous (continuous) bifurcation in Xss and associ-
ated behavior in Zss. Note that in the purely Hamiltonian
system second-order transitions occur at�hc�, but the first-
order transition has no counterpart (for � > 0) and arises
here due to a dissipative instability. The behavior we ob-
serve bears some relation to critical points found in coop-
erative resonance fluorescence (see, e.g., [14]).

In the large-N limit, quantum fluctuations can be in-
cluded in the analysis as a first-order correction using a
large-N expansion of the Holstein-Primakoff (HP) repre-
sentation of angular momentum operators [15]. Applied in
a coordinate system where the mean Bloch vector points
along the positive z axis, this takes the form Jz � N=2�
cyc ’ N=2 and J� � �N � cyc�1=2c ’

����
N
p

c, where c (cy)
is a bosonic annihilation (creation) operator. This lineari-
zation about the mean-field state leads to a master equation
of the general form
 

_� � �i�HHP; �� � ��D�c
y��� ��D�c��

� f��2c�c� c2�� �c2� � H:c:g; (8)

where HHP is a quadratic in fc; cyg and the coefficients are
functions of fh; �;�a;�bg [13]. Equation (8) yields
coupled, linear equations of motion for hci and hcyi, the
eigenvalues of which display a sequence of bifurcations in
both their real and imaginary parts as h is varied. The phase
transitions are marked by the real part of one eigenvalue
going to zero (i.e., critical slowing down) at h � hc�.

To examine this structure and dynamics, we consider the
transmission of a (weak) probe laser field through the

medium as a function of the probe frequency; i.e., we
examine the frequency response of the system. A sche-
matic of such a measurement setup is shown in Fig. 1(b).
To compute the transmission spectrum we retain the two
cavity modes in our model (i.e., we start from (2), but again
perform a linearization (N � 1) about the mean-field
state. We consider the case in which the probe laser drives
mode b, and the transmission spectrum Tp��p� is defined as
the coherent intensity, at probe frequency �p (in the rotat-
ing frame), in the output field from mode b.

In Fig. 3 we plot Tp��p� (normalized by the maximum
empty-cavity transmission) for a series of values of h
around hc�. For the chosen parameters, the spectra consist
of sharp ‘‘atomic’’ resonances superimposed on a much
broader cavity mode resonance (i.e., �b � �b). The loca-
tions and widths of the atomic resonances are determined
by the imaginary and real parts of the above-mentioned
eigenvalues, respectively. For jh=�j> 1, the main atomic
feature is a dip of width 2�b at � ’ 2h, corresponding to a
cavity-mediated, collective spontaneous emission reso-
nance. For jh=�j< 1, spin-spin interactions play a more
significant role and a pair of resonances at opposite fre-
quencies feature in the spectrum. As h! hc� both from
above and below these two features merge continuously
into a single peak, centered at �p � 0, which ultimately
diverges at h � hc� in a pronounced signature of the
second-order phase transition. The same merging and di-
vergence is seen for the first-order transition, but only as
h! hc� from below. For h very small (but >hc�), the
spectrum consists of two sharp peaks of width ��bh=�
at �p ’ �2�. The transition is signaled by a discontinuous
jump from this two-peaked spectrum to a single divergent
peak at �p � 0.

FIG. 2. Semiclassical (solid line) and finite-N steady-state
inversion and second-order moments for �a=� � 0:01, �b=� �
0:2, and N � 25 (dotted line), 50 (short dashed line), 100 (long
dashed line).

FIG. 3. Transmission spectra in the linearized regime, for
h=� � f�0:6;�0:1;�0:01; hc�=�; 0:05; 0:3g (top), and f0:5;
0:95; 0:995; hc�=�; 1:1; 1:3g (bottom), with microscopic parame-
ters �a=�a � 0:02, �b=�a � 0:32, �b=�a � 1, �b � 0, giving
�a=� � 0:01, �b=� � 0:05. We set ��a;b � 0.
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To analyze the entanglement properties of the system,
we adopt a criterion for bipartite entanglement in
collective-spin systems which, for symmetric states, is
both necessary and sufficient, and reads [16]

 C’  1� �4=N�h�J2
’i � �4=N2�hJ’i2 > 0; (9)

where J’ � sin�’�Jx � cos�’�Jy. Here, we present nu-
merical results for CR  max’C’ (�0), which, in fact,
equals the rescaled concurrence �N � 1�C, where C is the
two-spin concurrence. In Fig. 4 we plot the steady-state
value of CR versus h=�, computed from the linearized HP
model and numerically from (5) for finite N. Both transi-
tions are characterized by a sharp peak in the entanglement
at the critical point [5–7], but they are distinguished by a
discontinuity in CR at h � hc� (forN ! 1) as opposed to a
discontinuity in @CR=@h at h � hc� [17]. The peaking of
CR at the critical points agrees with the conjecture of a
general association between semiclassical bifurcations and
maximal entanglement in dissipative, nonequilibrium
many-body systems [18]. In the region where CR � 0 the
state approaches a mixture of maximally polarised states
possessing large fluctuations (see Fig. 2). Note that, in the
adiabatic regime considered, the cavity field operator
b�t� / J��t�, and so collective-spin correlations (and hence
CR) can be deduced from moments of the cavity output
field, which may be measured by broadband homodyne
detection.

For an experimental realization, we have already men-
tioned 6Li in a ring-cavity setup. A suitable system can also
be designed using the ground states jF � 1; m � �1i of
87Rb and linearly polarized cavity modes [13]. For specific
parameter values, we consider recent experiments with
cold atoms inside a high-finesse optical ring cavity [19];
i.e., we take gij ’ 2�	 100 kHz and �a ’ 2�	 25 kHz.
For N ’ 106 atoms and a characteristic ratio �ij=�i ’

0:0025, we have �a ’ 2�	 250 kHz. With a Raman de-
tuning �a ’ 2�	 2:5 MHz, we then have � ’ 2�2

a=�a ’
2�	 25 kHz and �a ’ �a��a=�a�

2 ’ 2�	 0:25 kHz.
Ground-state magnetic level shifts of tens of MHz would
suffice to ensure distinct Raman channels. Mode b may be
more strongly damped (i.e., the two cavity polarizations
have different finesses), e.g., �b ’ 2�	 250 kHz, and,
with �b ’ 2�	 25 kHz and �b ’ 0, we would then
have �b ’ �

2
b=�b ’ 2�	 2:5 kHz� �a. Finally, the

rate for single-atom spontaneous emission (neglected in
our model) is estimated by �at�

2
ij=�4�2

i � & 2�	
0:01 kHz� �, �b for an atomic exited state decay rate
�at � 2�	 6 MHz.

To conclude, we have proposed a feasible cavity QED
system that is described by a dissipative LMG model and
exhibits both first- and second-order nonequilibrium quan-
tum phase transitions as a function of a single effective
field parameter. Measurements on the cavity output light
fields provide quantitative probes of the critical behavior.
The system also offers opportunities for investigating
phase transitions in response to variation of the strength
of dissipation (i.e., �b), for studying time-dependent be-
havior, such as entanglement dynamics, and for preparing
very highly entangled states, which typically occur for
short interaction times [13] and may in principle be ‘‘fro-
zen’’ by switching off all optical fields.
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