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We investigate few-boson tunneling in a one-dimensional double well, covering the full crossover from
weak interactions to the fermionization limit of strong correlations. Based on exact quantum-dynamical
calculations, it is found that the tunneling dynamics of two atoms evolves from Rabi oscillations to
correlated pair tunneling as we increase the interaction strength. Near the fermionization limit,
fragmented-pair tunneling is observed and analyzed in terms of the population imbalance and two-
body correlations. For more atoms, the tunneling dynamics near fermionization is shown to be sensitive to
both atom number and initial configuration.
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The double well is a paradigm model for some of the
most fundamental quantum effects, like interference or
tunneling. Using ultracold atoms, it has become possible
to study this system at an unprecedented level of control.
This has led, e.g., to the observation of Josephson oscil-
lations [1–3] and nonlinear self-trapping [1,4,5] of Bose-
Einstein condensates. In the first case, the weakly interact-
ing atoms—prepared mostly in one well—simply tunnel
back and forth between the two wells in analogy to a
Josephson current. However, above a critical interaction
strength, the atoms essentially remain trapped in that well
for the experimental lifetime even though they repel each
other. On the few-body level, this resembles the situation of
repulsive atom pairs, whose stability [6] and dynamics [7]
have recently been observed.

All of these effects are confined to the regime of rela-
tively weak interactions, where the dynamics can be under-
stood qualitatively (up to phases) by means of a single
parameter: the number of atoms in one well. However,
interactions in ultracold atoms can be adjusted experimen-
tally over a wide range, e.g., via Feshbach resonances [8].
In particular, in one dimension (1D) one can tune the
effective interaction strength at will by exploiting a
confinement-induced resonance [9], which makes it pos-
sible to explore the limit of strong correlations. If the
bosons repel each other infinitely strongly, they can be
mapped to noninteracting fermions [10] in the sense that
the exclusion principle mimics the hard-core interaction.
While local properties like the densities are shared with
their fermionic counterparts, nonlocal aspects such as their
momentum distribution are very different. Sparked also by
its experimental demonstration [11,12], this fermionization
has attracted broad interest (see [13,14] and references
therein).

In this Letter, we investigate the case where a few atoms
are loaded into the same well and explore the tunneling
dynamics as we vary the interaction strength from zero up
to the fermionization limit. For two atoms, we show that
the character of the tunneling changes from Rabi oscilla-
tions to correlated pair tunneling. Near fermionization, the

strongly interacting atoms tunnel back and forth as a
fragmented pair. For three or more atoms, the tunneling
dynamics turns out to depend strongly on the atom number
and the initial imbalance.

Model and computational method.—The double-well
dynamics is described by the many-body HamiltonianH �
PN
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Gaussian �w�x� � e�x
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w (we choose w � 0:5
and h � 8, where harmonic-oscillator units are employed
throughout). The effective interaction resembles a 1D con-
tact potential [9], but is mollified with a Gaussian ���0:05

so as to alleviate the well-known numerical difficulties of
the � function. We focus on repulsive forces g 2 �0;1�.

Our goal is to investigate the few-atom quantum dynam-
ics in the crossover to the highly correlated fermionization
limit g! 1 in a numerically exact fashion. This is a
challenging task, and most studies on the double-well
dynamics so far have relied on two-mode models [2,15]
valid for sufficiently weak coupling. Our approach rests on
the multiconfiguration time-dependent Hartree method
[16], a wave-packet dynamics tool which has been applied
successfully to few-boson systems (see [14] for details).

From uncorrelated to pair tunneling.—To prepare the
initial state ��0� with a population imbalance—in our
case, such that almost all atoms reside in the right-hand
well—we make that side energetically favorable by adding
a linear external potential�d � x (d > 0) and let the system
relax to its ground state ��d>0�

0 . For sufficiently large d, this
amounts to preparing nearly all atoms in one well. To study
their time evolution in the symmetric double well, in our
simulations the asymmetry will be ramped down, d! 0,
within some time � > 0.

Let us now study how the tunneling changes as we pass
from uncorrelated tunneling (g � 0) to tunneling in the
presence of correlations and finally to the fermionization
limit (g! 1). It is natural to first look at the conceptually
clearest situation where N � 2 atoms initially reside in the
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right-hand well. Absent any interactions, the atoms simply
Rabi oscillate back and forth between both wells, which
materializes in the percentage of atoms in the right well
pR�t� � h��x�i��t� �

R
1
0 ��x; t�dx (� being the one-body

density) or, correspondingly, the population imbalance
� � pR � pL � 2pR � 1. By contrast, if the atoms repel
each other, then the tunneling process will be modified, as
can be seen in Fig. 1(a). For g � 0:2, one sees that the
tunneling oscillations have become a two-mode process:
There is a fast (small-amplitude) oscillation which modu-
lates a much slower oscillation in which the atoms even-
tually tunnel completely (pR 	 0). In case g is increased
further, we have found that the tunnel period becomes
indeed so long that complete tunneling is hard to observe.
For example, at g � 1:3 the period is as large as 2
 103.
What remains is a very fast oscillation with only a minute
amplitude—the two-body analog of quantum self-
trapping. As we go over to much stronger couplings (see
g � 4:7), we find that the time evolution becomes more
and more complex, even though this is barely captured in
the reduced quantity pR [Fig. 1(a)]. What is striking,
though, is that near the fermionization limit (see g � 25)
again a simple picture emerges: A fast, larger-amplitude

motion is superimposed on a slightly slower tunneling
oscillation whose period roughly equals that of the Rabi
oscillations.

To get an understanding of the oscillations, Fig. 2 ex-
plores the evolution of the two-body spectrum fEm�g�g as g
is varied. In the noninteracting case, the low-lying spec-
trum is given by distributing the N atoms over the lowest
antisymmetric or symmetric orbital of the trap. This yields
the N � 1 energies fEm � E0 �m��0�gNm�0, where ��0� �
�1 � �0 is the energy gap between these two orbitals, or the
splitting of the lowest band. Assuming that for sufficiently
small g still only N � 1 � 3 levels are populated, then the
imbalance ��t� (and likewise pR) can be computed to be
[17]

 ��t� � �01 cos�!01t� � �12 cos�!12t�; (1)

where !mn � Em � En and �mn � 4h�mj��x�j�nicmcn
are determined by the participating many-body eigenstates
and their weight coefficients cm. At g � 0, due to the
levels’ equidistance, only a single mode with Rabi fre-
quency !01 � !12 � ��0� contributes. However, as the
interaction is ‘‘switched on,’’ the two upper lines E1;2

virtually glue to one another to form a doublet, whereas
the gap to E0 increases (Fig. 2 inset). For times t� T12 �
2�=!12, we see only an oscillation with period T01 � T12,
offset by �12, which on a longer time scale modulates the
slower oscillation determined by !12. For small initial
imbalances, jc0=c2j � j�01=�12j  1, so for short times
we observe the few-body analog of Josephson tunneling. In
our case of an almost complete imbalance, in turn, j�12j
dominates, which ultimately corresponds to self-trapping,
viz., extremely long tunneling times. These considerations
convey a simple yet essentially exact picture for the two-
body counterpart of the crossover from Rabi oscillations to
self-trapping beyond the bare two-mode approach common
for condensates [2].

It is obvious that the two-frequency description above
breaks down as the gap to higher-lying states melts, as for
g � 4:7. Concordantly, the dynamics becomes more com-
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FIG. 1 (color online). Two-atom dynamics. (a) Relative popu-
lation of the right-hand well over time, pR�t�, for different
interaction strengths g � 0 (solid line), g � 0:2 (dashed line),
g � 4:7 (dotted line), and g � 25 (dash-dotted line).
(b) Snapshots of the one-body density ��x� for different times
t in the fermionized case g � 25. (All quantities are in
harmonic-oscillator units throughout; see the text.)
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FIG. 2 (color online). Low-lying spectrum of two bosons in a
double well as a function of the interaction strength g. Inset:
Doublet formation with increasing g.
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plicated. However, in the fermionization limit (exemplified
for g � 25), the system becomes integrable again by map-
ping it to noninteracting fermions [10]. As an idealization,
assume that at t � 0 we put two (auxiliary) fermions in the
ground state of the right well, where they would occupy the
lowest two orbitals. Expressing this through the fermionic
eigenstates jni� of the full system leads to [17] ��t �

0� � 1
2

P
a;b2f0;1gj1

�0�
a ; 1

�1�
b i�, where 1���a denotes occupation

of the symmetric (a � 0) or antisymmetric (a � 1) orbital
in band�. Analyzing the corresponding energies, one finds
that the frequencies contributing to the imbalance dynam-
ics are exactly ��0� (the lowest-band Rabi frequency, cor-
responding to the longer tunneling period) and ��1� (the
splitting of the upper band). This intriguing result states
that only two modes determine the imbalance dynamics, so
that the strongly repulsive atoms coherently tunnel back
and forth almost like a single particle. As an illustration,
snapshots of the density at different t are displayed in
Fig. 1(b). This demonstrates the tunneling of a fragmented
pair.

In order to unveil the physical content behind the tun-
neling dynamics, let us now investigate the two-body
correlations. Noninteracting bosons simply tunnel inde-
pendently, which is reflected in the two-body density (or
correlation function) �2�x1; x2�. As a consequence, if both
atoms start out in one well, then in the equilibrium point of
the oscillation it will be as likely to find both atoms in the
same well as in opposite ones. This is illustrated in Fig. 3,
which exposes �2 at the equilibrium points and visualizes
the temporal evolution of the pair (or same-site) probabil-
ity p2 �

R
fx1x2�0g �2�x1; x2�dx1dx2. As we introduce small

correlations, the pair probability does not drop to 0.5 any-
more—at g � 0:2 it notably oscillates about a value near
100%. This is apparent from the equilibrium-point snap-
shot of �2: Both atoms remain essentially in the same well
in the course of tunneling. In other words, they tunnel as
pairs. On top of this, Fig. 3 in hindsight also lays bare the
nature of the fast (small-amplitude) modulations of pR�t�
encountered in Fig. 1(a) by linking them to temporary
reductions of the pair number p2. Thus it is fair to interpret
them as attempted one-body tunneling. As before, the time
evolution becomes more involved as the interaction energy
is raised to the fermionization limit (cf. g � 25). The two-
body correlation pattern is fully fragmented not only when
the pair is captured in one well (corresponding, e.g., to the
upper right corner x1; x2 � 0), but also when passing
through the equilibrium point t � 53. Similarly, the evo-
lution of p2�t� is governed by two modes, ��0� � ��1�, and
over time p2 passes through just about any value from 1
(fragmented pair) to almost zero (complete isolation).

Many-body effects.—Although we have focused so far
on the case of N � 2 atoms, the question of higher atom
numbers is interesting from two perspectives. For one
thing, it is fascinating because for g 1 many results
become explicitly N dependent, including distinctions be-

tween even or odd atom numbers [14]. (The experimental
preparation of definite N � 3; 4; . . . is feasible, if harder to
achieve due to losses. In fact, the experimental setup in
[12] requires only an additional central barrier created by a
Gaussian light sheet.) On the other hand, in a setup con-
sisting of a whole array of 1D traps as in [11,12], number
fluctuations may automatically admix states with N > 2.

ForN � 3, the weak-interaction behavior does not differ
conceptually. In fact, Eq. (1) carries over but with the sum
now running over m< n � N. While the dynamics is no
longer determined by strictly two frequencies, the separa-
tion of time scales (related to the formation of doublets in
the spectrum) persists—ultimately, this should connect to
the condensate dynamics valid for N  1. Things become
more intricate if we leave the two-mode regime, though. In
particular, the fermionization limit reveals a clear N de-
pendence (Fig. 4). Generally, an idealized state with N
fermions initially in one well has contributions from all
excitations j1�0�a0

; . . . ; 1�N�1�
aN�1

i� (a� � 0; 1 8 �) in the N
lowest bands. Hence all tunnel splittings ���� for each
band are expected to be present [17]. Figure 4(a) conveys
an impression of the complexity of the dynamics by ex-
hibiting pR�t� for N � 3; 4. This somewhat erratic pattern
may wash out the clear signature of the two-atom case
upon averaging over an array. In an experiment, it is there-
fore desirable to reduce number fluctuations, e.g., by hav-
ing sufficiently high barriers in between different copies of
the double well.

In the context of many-body effects, it is interesting to
consider what happens if not all N � 3 atoms are prepared
in one well, but rather, say, N � 1 in one well and one in

FIG. 3 (color online). Top: Probability p2�t� of finding two
atoms in the same well for g � 0, 0.2, and 25. Bottom: Snapshots
of the two-body correlation function �2�x1; x2� at equilibrium
points, ��t� � 0, for g � 0 (t � 44), g � 0:2 (t � 128), and g �
25 (t � 53)—from left to right.
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the other. Paraphrased in the case N � 3, this is the ques-
tion of the fate of an atom pair if the target site is already
occupied by an atom. The striking answer, as evidenced in
Fig. 4(b), is that the process can be viewed as single-atom
tunneling on the background of the symmetric two-atom
ground state. The tunneling frequency in the fermioniza-
tion limit is simply the tunnel splitting ��1� 	 2�=40. This
has the intuitive interpretation of a fermion which—lifted
to the band � � 1—tunnels independently of the two
lowest-band fermions. From that point of view, it should
come as no surprise that adding another particle destroys
that simple picture. In fact, Fig. 4(c) reveals that if we start
with N � 1 � 3 atoms on the right, then the tunneling
oscillations appear erratic at first glance, and a configura-
tion with three atoms per site becomes an elusive event.
(For example, at t 	 22, three atoms are on the left site,
whereas at t 	 44; 72 three atoms are on the right.) In the
spirit of the Fermi map above, this can be understood as
superimposed tunneling of one atom in the first excited
band (��1�) and another in the second band (��2� 	
2�=15), while the remaining zeroth-band fermions stay
inactive.

Finally, we mention that one may not only use the tilt d
to load the atoms into one well, but also to study tunneling
oscillations in asymmetric wells in order to actively tune
the tunneling. A detailed investigation [17] reveals that, for
medium g, single-particle tunneling can be resonantly

enhanced if the right well is lowered enough to compensate
the interaction-energy shift. In the fermionization limit, in
turn, single-atom tunneling turns out resonant already for
d � 0, while tuning d makes other resonances accessible.

In conclusion, we have performed an ab initio investi-
gation of the full crossover from uncorrelated to fermion-
ized tunneling of a boson pair in a double well. Remarkable
features of this pathway are the strongly delayed pair
tunneling encountered for medium interactions and, in
the fermionization limit, fragmented-pair tunneling at the
Rabi frequency. Having pushed the notion of tunneling
toward strongly interacting systems, this opens up intrigu-
ing perspectives, ranging from resonantly tuning the tun-
neling to considering multiwell setups.
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FIG. 4 (color online). Many-body effects in the fermionization
limit (g � 25). (a) Population of the right-hand well, pR�t�, for
N � 3; 4 atoms initially in one well. Bottom: Density evolution
��x; t� for N � 1 � 2 atoms (b) and N � 1 � 3 atoms (c)
initially in the right-hand well if exactly one atom is present
on the left.
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