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Nonlocal Effects in Flows of Wormlike Micellar Solutions
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The flow curve of wormlike micelles usually exhibits a stress plateau o* separating high and low
viscosity branches, leading to shear-banded flows. We study the flow of semidilute wormlike micellar
systems in a confined geometry: a straight microchannel. We characterize their local rheology thanks to
particle image velocimetry. We show that flow curves cannot be described by a simple constitutive
equation linking the local shear stress to the local shear rate. We demonstrate the existence of nonlocal
effects in the flow of wormlike micellar systems and make use of a theoretical framework allowing the

measurement of correlation lengths.
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Wormlike micelles are long, cylindrical aggregates of
self-assembled surfactants that dynamically break and re-
combine [1]. Those systems exhibit a characteristical flow
curve shear stress vs shear rate o = f(y) with a stress
plateau o*, separating two branches of low and high
viscosity, and corresponding to different structures [2].
On the stress plateau, and at applied rates of shear, macro-
scopic bands of different y and micellar orientations coex-
ist [3—6]. As in an equilibrium transition, the proportion of
the bands varies as 7y is changed in the plateau. An im-
portant feature of this transition is the existence and the
robustness of the ¢* value for a given system. In the past
decades, theoretical approaches tried to account for these
observations. Spenley et al. [7] used a reptation-reaction
model, initially developed for linear rheology, and pro-
posed a constitutive law. They found a multivalued flow
curve exhibiting two stable branches separated by an un-
stable zone where o decreases as a function of . The main
difficulty on those early models was to find out a mecha-
nism to ensure the selection of the shear stress o* at which
the high shear band appears. Various criteria such as mini-
mization of an effective nonequilibrium free energy under
flow [8], boundary conditions on the normal stress in pipe
flow [9], or local maximum of the flow curve were used,
but shown to be only in qualitative agreement with experi-
mental data. Then a major improvement in the theoretical
description was achieved by taking into account stress
propagation across the interface [10—15]. This stress flux
may arise either from the Brownian diffusion of polymer
to-and-fro across the interface, or from van der Waals,
Coulomb, or hydrodynamic interactions between polymer
chains through the interface. It has been demonstrated that
the introduction of this diffusion term in the constitutive
law ensures a robust o* selection [14,15]. At this stage,
experimental evidence of these nonlocal terms is still
missing; i.e., the breakdown of the relation linking the
shear rate to the shear stress has never been reported
before. To probe these mechanisms in even more details,
we choose to study the rheology of wormlike micelles in a
confined geometry: a straight microchannel. Contrary to
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Couette and cone-and-plate cells or even large pipes [16—
18], such a confined planar Poiseuille flow dramatically
enhances the effect of nonlocal terms. The main originality
of our work is to demonstrate the existence of nonlocal
effects in the flow of a wormlike micellar system on two
well-known systems and to propose a theoretical frame-
work allowing the measurement of correlation lengths.

Our study mainly focuses on cetylpyridinium chloride
(CP™", C17) and sodium salycilate (Na™, Sal")ina 0.5 M
NaCl brine at 22 °C [19], at 6 wt% with a molar ratio
[Sal]/[CPCI] = 0.5. We then expand our observations and
analysis to another wormlike micellar system: a 0.3 M
solution of cetyltrimethylammonium bromide (CTAB) in
a 0.405 M sodium nitrate brine (Na*, NO, ™) at 25 °C [20].
Both systems range in the semidilute regime far from the
isotropic-nematic transition in concentration.

We study the flow of wormlike micellar systems in a
homemade straight ““canyon’ microchannel [21] of a large
aspect ratio (height 1 mm and width w = 200 um). The
pressure-driven flow is imposed thanks to a pressure con-
troller with pressure drops AP = 50-2000 mbar. The can-
yon geometry is well approximed by two infinite parallel
planes: stream lines follow the direction X of the channel;
velocity profiles are Poiseuille-like in the transverse direc-
tion Z (canyon width) and almost uniform along the can-
yon height. Velocity profiles in this confined geometry are
measured using particle image velocimetry [22]. In this
purpose the fluid is seeded with small particles (Invitrogen
FluoSpheres 1 um; volumic fraction 4 X 107°%). Images
in the X-Z plane of the channel width w are acquired using
an inverted fluorescent microscope, at a 40X magnifica-
tion, at middle height of the channel (depth of field
~] wum), and far enough from the inlet of the channel to
measure fully developed profiles. A CCD camera coupled
to an intensifier (Hamamatsu and R&D Vision) allows us to
record couples of images and thus to access local velocities
up to =1 m/s with a spatial resolution AZ =~ 1 um in the
plane of the flow.

Figure 1 shows velocity profiles for the CPCl-Sal 6 wt %
at different AP, plotted against the normalized coordinate
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FIG. 1. Velocity profiles at (a) (O) AP =200, (>) 300,
(b) () 400, (<) 500, and (A) 600 mbar; solid lines correspond
to the modelized profiles according to Eq. (2) with the same
fitting parameters for all of them and a standard deviation std =
83 ums~! (CPCI-Sal).

z = 2Z/w. Below 200 mbar, velocity profiles correspond
to Poiseuille-like flows. At 300 mbar, thin highly sheared
bands start to nucleate at the lateral walls. For higher AP,
the width z, of these bands increases, and the profiles
correspond to plug flows, with lower viscosity bands near
the walls. Widths z, are easily determined from the neat
change in the slope of the profiles. At every imposed
pressure drop, significant slippage is observed at the walls.
Slip velocities Vg, are experimentally determined by lin-
ear fits of the last points of the profiles near the walls. We
observe that Vg, ~ A(AP/L)* with A = 6.4 X 10~'! S.I.
and o = 3.2, yet their contributions to the maximal veloc-
ity Vinax remain almost constant (Vg;, = 0.15V,,). Visible
nonpolarized light experiments were also performed in the
same canyon geometry [see Fig. 2(a)]. For the lower AP
(<300 mbar), homogeneous intensities throughout the
width of the channel are observed. Above 300 mbar, darker
bands start to nucleate at the walls, and their widths z,
increase with AP. These refraction index changes are
probably due to variations of the texture of the wormlike
micelles. Furthermore Fig. 2(c) shows the spatiotemporal
evolution of these bands below AP = 700 mbar. At those
AP they are stable in space and time, yet they display
significant fluctuations above. Figure 3 depicts the width z,,
of the highly sheared bands inferred from the profiles
displayed in Fig. 1, as a function of the measured widths
z4 of the bands observed using visible light. It shows those
darker bands correspond to the highly sheared bands nu-
cleating at the walls above 300 mbar.

From the velocity profiles in such a microchannel flow,
we can deduce the local rheological behavior [23-25].
Indeed, starting from the Stokes equation, assuming our
geometry is well approximed by two infinite parallel
planes, in the stationary regime and in the lubrication
approximation, for any fluid the local shear stress o is
given by
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FIG. 2. (a) Visible light experiments, and (b) corresponding

normalized velocity profiles at AP = 300 (left) and 500 mbar
(right). (c) Space-time plots of the same data. For those visible
light data, an homogeneous reference at AP = 200 mbar is
substracted (CPCI-Sal).
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L being the length of the channel, and dP/dX the local
pressure gradient. To derive the previous relation, we
assume that dP/dX is given by AP/L, since entrance
and exit effects are not significant. Indeed, rough estimates
of the entrance and exit lengths for shear thinning fluids
[26] lead to distances smaller than 70 wm in our experi-
ments, i.e., to distances at least a hundred times smaller
than the length of the channel. Besides, as the local shear
rate y is simply given by the local slope in the velocity
profile, each Z position in the channel corresponds to a pair
(o, 7). Hence from a single profile, we can access the
whole flow curve. The local flow curves obtained by
such a procedure are depicted in Fig. 4, as the global one
determined by the shear-rate-imposed mode of a rheometer
(TA Instruments ARG2) using a sanded cone-and-plate
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FIG. 3. Width of the highly sheared band z, vs width of the
dark band observed in visible light z,. The widths have been
normalized by w/2, where w is the width of the channel. The
dotted line corresponds to z, = z,; (CPCI-Sal).
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FIG. 4. Flow curve from a rheometer using a cone-and-plate
cell (X), flow curve deduced from the velocity profiles at 200
(O), 300 (>), 400 (O), 500 (<), and 600 mbar (A). Inset: (@)
stress plateau o* vs pressure drop AP; (M) width of the highly
sheared band z,, vs AP (CPCI-Sal).

cell. There is quite good agreement between these local
and global rheological behaviors, but only for y < 10 s~ !,
corresponding to the highly viscous branch. Above, sig-
nificant discrepancies are observed. The rheological be-
havior of the highly sheared branch seems to vary as a
function of the applied AP. We focus on the values of the
stress o at the interface between the two bands deduced
from z,, using Eq. (1). The inset of Fig. 4 shows clearly that
o™ increases significantly with the applied AP. In other
words, z,, vs AP does not grow as much as it should if o™
was constant. Note that local velocimetry experiments
performed in a Couette cell (without strong shear stress
gradient) or in large pipes (which is not a confined geome-
try) evidenced a constant o* with an increasing applied y
on the same system [5,16—18]. However, our experiments
in a confined geometry reveal that a simple description
o = f(y) with a unique value of ¢* is not sufficient to
describe the flow for the whole studied range of AP. This
point is highly striking and shows that stress in wormlike
micellar systems depends on other variables than . We
show thereafter that nonlocal descriptions are required to
understand those phenomena. A careful theoretical analy-
sis of the shear rate and shear stress profiles at the interface
between two shear bands led Dhont [14] to the same
conclusions. In order to cope with both the strong inhomo-
geneity of 7 and the abnormal polymer stress across the
interface, he introduced nonlocal terms in the constitutive
law to model stress diffusion. From a microscopic point of
view these terms may arise from propagation of short or
long range interactions between wormlike micellar chains
across the interface. At steady state this leads to

a*y(2)
0z%

The first term R(7) = n[¥(Z)]7(Z) is the contribution to o
due to a flow in an infinite geometry with no effect of the

o(2) = nlv(2)]y(2) — D

2

boundary conditions, in the absence of shear banding. The
term Dd’y/dZ* is the nonlocal term. It expresses the
smoothing of interfaces between bands. In planar shear
flow, this model allows a robust selection of the stress
plateau value o* [14,15]. In order to compare our data
with this constitutive equation, we need to model R(y) and
solve Eq. (2) in a planar Poiseuille flow. We assume R(7) is
a multivalued function presenting two separated branches.
For v < vy, the low sheared branch is Newtonian, R(y) =
ny; for v > vy, the high sheared branch is shear thinning
R(y) = Ay". To solve Eq. (2), two boundary conditions
are required. First, the flow is axisymmetric which leads to
¥(0) = 0. Second, 7y at the wall and the slip velocities are
experimentally determined from the velocity profiles.
Remembering Eq. (1), we solve Eq. (2) and fit the free
parameters. Figure 1 displays a comparison between this
model and our experimental data. A single set of parame-
ters (D = 2.1 X 1071 Pasm?, y, =557 !, » = 30 Pas,
A =17 S.I, and n = 0.5) allows us to perfectly fit all the
profiles with a standard deviation of 83 ums~! [27].
Correlation lengths involved in the nonlocal process can
be deduced by [ = [D/n(¥)]"/2. In the plateau region [
ranges from 3 to 22 um, in agreement with recent indirect
measurements [28]. Clearly, these high characteristic
lengths cannot be related to the mesh size. However, we
believe that they are physically meaningful and are related
to the structure induced by local concentration fluctuations
in the highly sheared band. We recall that visible light
microscopy reveals that the high shear band appears to
be black, suggesting the existence of concentration fluctu-
ations at a length scale larger than the micrometer (see
Fig. 2). Note also, that / remains small in comparison to the
gap of classical rheometers (0.5—-1 mm) which induces that
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FIG. 5. (a) Velocity profiles at (>) AP = 1000, ((J) 1100, (<)
1200, and (A) 1300 mbar; solid lines correspond to the mod-
elized profiles according to Eq. (2) with the same fitting pa-
rameters for all of them and a standard deviation
std = 398 ums™ . Vaip ~A(AP/L)* with A = 3.51072% S.1.
and @ = 5.7. (b) Corresponding local flow curves, and global
flow curve measured with a theometer (X). Inset: stress plateau
vs pressure drop (CTAB-NaNOs).
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FIG. 6. Visible light experiments at AP = (a) 700 and
(b) 1300 mbar. A homogeneous reference at AP = 200 mbar
is subtracted (CTAB-NaNOs).

nonlocal effects cannot be sounded in these geometries,
even by performing local measurements. Figure 5 sums up
the main results we obtained on a similar wormlike micel-
lar system: CTAB-NaNO;. Figure 5(a) depicts velocity
profiles at different pressure drops. At low AP the same
results were obtained by Degré et al. [29]. Figure 5(b)
shows the global and local flow curves. The inset shows
the evolution of ¢* with AP. The solid lines on Fig. 5(a)
correspond to the fits with Eq. (2) with a single set of
parameters (D = 2.01 X 10719 Pasm?, y, =4 s !, n =
30 Pas, A =39 S.I, and n = 0.391). Correlation lengths /
in the plateau region range between 3 and 8 pum and are
much larger than the ones measured by Radulescu et al.
[30] using kinetic experiments. Note that these discrepan-
cies might be due to the difficulty to properly separate in
the kinetics the different steps involved in the displacement
of the interface (instability, reconstruction, and front
propagation) [31]. Visible light experiments (Fig. 6) also
exhibit strong refractive index fluctuations in the highly
sheared bands, which appear to be stable in space and time
under a critical AP of 1500 mbar. Note that in this case, the
highly sheared bands exhibit both darker and brighter area,
the interface is therefore blurred, which differs from the
CPCl-Sal system. That phenomenon seems more complex,
yet might be due to the smaller range of accessible corre-
lation lengths.

To conclude, we evidenced a generic behavior of worm-
like micellar solutions in the semidilute regime. Nonlocal
terms are required to describe the stress propagation across
the interface in shear-banded flow. These nonlocal terms
have a huge importance in the selection of the position of
the interface in planar Poiseuille flow. We point out that
correlation lengths involved in this process are very large,
yet correspond to the length scale involved in the concen-
tration fluctuations. Recent studies [31,32] suggest the
existence of instabilities captured by Fielding et al. [33]
using a modified Johnson Segalman model. To investigate
such instabilities further, experiments at higher AP are
planned, as well as quantitative comparisons with micro-
scopic models [34].
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