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A conformation space kinetic model is constructed to drive the deformation cycle of a three-sphere
swimmer to achieve propulsion at low Reynolds number. We analyze the effect of an external load on the
performance of this kinetic swimmer and show that it depends sensitively on where the force is exerted, so
that there is no general force-velocity relation. We discuss how the conformational cycle of such
swimmers should be designed to increase their performance in resisting forces applied at specific points.
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Active transport is a most fascinating aspect of the busy
life in the cell [1]. In the nanoscale world where thermal
agitations are wild, miniature machines called molecular
motors convert chemical energy—from hydrolysis of ad-
enosine triphosphate molecules—directly into useful me-
chanical work, in the form of carrying cargo or sliding
actin filaments along one another. While it is difficult to
imagine fabricating such sophisticated machines in the lab,
one may naturally wonder if it is possible to design simpler
machines with similar functionalities [2]. In this flavor, an
interesting target is an autonomous small scale swimmer
[3,4], which could later on be steered by coupling to a
guiding network or system.

Swimmers at small scale (low Reynolds number) have to
undergo nonreciprocal deformations to break the time-
reversal symmetry and achieve propulsion [5]. This im-
poses significant constraints when one wants to design a
swimmer with only a few degrees of freedom and strike a
balance between simplicity and functionality [6]. Recently,
there has been an increased interest in such designs [7,8],
and an interesting example of such robotic microswimmers
has been realized experimentally using magnetic colloids
attached by DNA- linkers [3].

Here we combine features of simple low Reynolds num-
ber hydrodynamic swimmers and elements characteristic
of models for chemical molecular motors. We focus on a
recently introduced three-sphere swimmer [7] with the
minimal 2 degrees of freedom. Instead of assuming a
prescribed sequence of deformations, we consider these
deformations to occur stochastically, as conformational
transitions between elongated and shortened states for
each of the 2 degrees of freedom. This gives us a swimmer
with a velocity that depends on the transition rates between
these states, which in practice could come about via
mechanochemical transitions, i.e., due to chemical reac-
tions that are coupled with such mechanical deformations
[1]. We check that a net velocity requires that detailed
balance in the transition rates is broken. Using this simple
kinetic model, we study the effect on the swimming ve-
locity of a resisting external force or load: the load clearly
drags the swimmer backwards, but also puts elements in

compression or extension, thereby modifying the transition
rates between extended and shortened states. As a conse-
quence, we find that the performance of the motor strongly
depends on where the force is exerted, in contrast to the
usual perception that the performance of a swimmer—or a
motor—can be summarized in a unique force-velocity
relation. Interestingly, the motor performance can in
some special cases be increased upon application of the
external load, provided it is applied at the right location.
More generally, we discuss efficient strategies for optimiz-
ing the performance of this swimmer.

We start with the swimmer model introduced in [7],
namely, three spheres connected by two linkers of negli-
gible hydrodynamic effect, that cycle in time between
extended and short states. For simplicity, we take here all
sphere radii to be equal to a. We further assume that the
lengths of the two arms are L1�t� � ‘1 � u1�t� and L2�t� �
‘2 � u2�t�with the ui’s being small perturbations about the
average lengths. For prescribed arm deformations, writing
a force balance on each sphere leads an instantaneous net
displacement velocity of the swimmer that can here be
written as a series expansion v�t� � Ai _ui � Bij _uiuj �
Cijk _uiujuk � � � � , where the coefficients Ai, Bij, Cijk,
etc., are purely geometrical prefactors (i.e., involving
only the length scales a and ‘i). After many cycles, this
process gives a vanishing contribution from the linear
terms _u1 and _u2 and from the symmetric combination
_u1u2 � _u2u1 � d�u1u2�=dt. Thus to leading order the av-

erage swimming velocity is

 V � hvi �
K
2
h _u1u2 � _u2u1i � K

�
dA
dt

�
; (1)

where dA is the area element in the (u1, u2) space, and
K � a

3 �
1
‘2

1
� 1

‘2
2
� 1
�‘1�‘2�

2	 [9]. In other words, to the leading

order the swimming velocity is proportional to the area
enclosed by the orbit of the cyclic motion in the configu-
ration space of the deformations.

We now focus on a situation where the two arms can be
in two states with deformations of either ui � 0 or ui � �i,
and transit from one to the other in an almost instantaneous
fashion. This means that the configuration space of the
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swimmer will be made of only four distinct states as shown
in Fig. 1, which correspond to different values of the pair
(u1, u2), namely state A for ��1; �2�, state B for ��1; 0�,
state C for �0; 0�, and state D for �0; �2�. We then assign
transition rates to the system, corresponding to the average
rate of opening and closing of the arms. For example, the
transition rate from state A to state B is denoted as kBA, and
similar notations are used for the 8 rates describing forward
and reverse transitions along the cycle

 A
kBA
kAB

B
kCB
kBC

C
kDC
kCD

D
kAD
kDA

A: (2)

For simplicity, and at the cost of motor efficiency, we
assume that the transitions occur quite rapidly and seldom,
so that they never ‘‘overlap.’’

We can now calculate the swimming velocity as a func-
tion of the transition rates. At steady state, the average
swimming velocity of the object is given by the probability
current J along the A! B! C! D! A cycle times the
net displacement while performing the cycle. This distance
�x is simply K�1�2, which yields V � K�1�2J. The
probability current J is a function of the transition rates,
which can be obtained from straightforward algebra:

 J �
kADkDCkCBkBA � kABkBCkCDkDAP

replace A by B;C;D�kADkDCkCB � kABkBCkCD � kABkADkDC � kADkABkBC�
: (3)

From the above equation it is clear that if the detailed
balance holds, then J is zero as the numerator vanishes.
Using the average steady state current, we can deduce the
average period of one full cyclic motion along A! B!
C! D! A as T � J�1. In general, a 1$ 2 asymmetry
in the system, together with breaking the detailed balance
at least for one of the transitions, will lead to net motion.
For the particular limit where the forward rates are all
much higher than the corresponding backward ones
(kBA � kAB, etc.), we find T � k�1

AD � k
�1
DC � k

�1
CB � k

�1
BA,

which simply means that the period for a full cycle is the
sum of the time intervals needed to complete each leg of
the cycle. As another example, we can assume that all of
the equilibrium k��’s are equal to 1 (for the sake of
illustration), and that by external action only one of them
is modified, e.g., kBA � 1� �. In this case, it is easy to
show that Eq. (3) yields J � �=�16� 6��, which leads to a
velocity proportional to the perturbation if the latter is
small and independent of it if the perturbation is very large,

as the cycling is then limited by the other three unperturbed
transitions. In general, it is easy to see that the slowest leg
of the reaction controls the average rate of full cyclic
motion.

It is interesting to study the effect of an external load on
the velocity of the system and the performance of the
motor. When the swimmer is subject to external forces,
because of carrying a cargo, for example, there are two
types of mechanical responses in the system. First, the
external forces enter the hydrodynamic force balance on
each sphere, and this will introduce a Stokes drag on the
sphere as a whole, which is a linearly decaying contribu-
tion to the net swimming velocity as a function of force.
Second, the transition rates that control the kinetics of the
deformations for the two arms of the swimmer are affected
by the external forces as they will have to do mechanical
work against them to induce the deformations. Depending
on where the force is applied, different legs of the kinetic
cycle could be affected, and this could lead to a complex
mechanical response with the performance of the motor
depending on the location of the load. The force-dependent
kinetic rates will yield a net current J�F�, which combines
with the Stokes response to give the swimming velocity as

 V�F� � �
F

18��aR
� V0J�F�=J�0�; (4)

where V0 is the swimming velocity at zero force, � is the
viscosity of the solvent, and aR is a renormalized hydro-
dynamic radius [10].

The transition rates are modified in the presence of
external forces, because the mechanical energy enters the
balance of probability of the different states and transitions
among them. If there is a transition from �! � that
corresponds to an extension by a factor of �, then under
a positive tension f the rate of �! � transitions is in-
creased by a factor of exp�fx=kBT� while the rate of �!
� transition is decreased by a factor of exp��fx0=kBT�
where typically x � �� is the distance between state � and
the energy barrier and x0 � �1� ��� is the distance be-

FIG. 1 (color online). Schematics of the configuration space of
the three-sphere swimmer. To maintain a net swimming to the
right, the deformation moves need to make more clockwise full
cycles than counterclockwise ones.
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tween the energy barrier and state � (� between 0 and 1).
Thus the ratio between the two transition rates (i.e., the
�! � rate divided by the �! � rate) changes under a
tension f by a factor of exp�fd=kBT� as required by the
Boltzmann formula (equilibrium populations between state
� and state � under f).

In our system, the value of the force under which each
arm should close or open depends on where the load is
applied. Figure 2 shows the breakdown of the mechanical
force balance on each sphere, and the corresponding forces
endured by each linker, for the three different positions of
the load. When the resisting force is attached to the head of
the swimmer, both linkers are under compressional forces,
and the compression force on the right arm—nearer to the
load—is larger than that of the left arm by a factor of 2.
Attaching the load at the tail creates a similar pattern of
tensional forces. If the force acts on the middle sphere, the
left arm is under compression and the right arm is under
tension.

Using the above definition, the transition rates from a
conformation state � to another state � can be written as

 k�� � k0�� exp
�
1

2

f���i
kBT

�
; (5)

where f�� is the force endured by the linker i that under-
goes a deformation during the �! � transition, and � �
1=2 is assumed for simplicity. The sign of f�� is deter-
mined by whether the transition (deformation) is helped
(�) or opposed (�) by the force acting on the linker. The
values of f�� are given in Table I for the forward reaction
rates for the different locations of the load. Note that by

definition f�� � �f��, which can be readily used to
calculate the reverse rates.

The force-dependent rates [from Eq. (5) and Table I] can
be used in Eq. (3) to calculate the current J�F�, which
determines the swimming velocity under the effect of an
external load F. From Eq. (4), it appears that the normal-
ized current J�F�=J�0� is a quantitative measure of how the
ability of the motor to generate propulsion is affected by
the presence of the load. In Fig. 3, this ‘‘motor performance
function’’ is plotted against the external force for the
particular example discussed above (in which only one of
the forward rates is enhanced to 1� � while the rest of the
rates are set to unity), and �1 � �2 � � is assumed for
simplicity. Figure 3(a) corresponds to when the A! B
(contraction of the left arm) transition rate is enhanced,
and it shows that attaching the load to the head or the
middle for both of which the left arm is under a compres-
sion of 1

3F quickly decreases the performance of the motor.
On the other hand, attaching the load to the tail of the
swimmer, which puts the left arm under a tension of 2

3F,
actually helps the motor initially for forces of up to
3kBT=� or so, before eventually hampering the perform-
ance at large forces. One notes that the force across the left
arm actually helps the A! B transition when the load is at
the head or the middle, and opposes it when it is at the tail.
It thus seems that the performance of the motor is best
when the rate is enhanced for the deformation that is most
hampered by the external load. In other words, the best
strategy seems to be to try and make the performances of
the different legs of the reaction cycle as uniform as
possible, as the total velocity is controlled by the weakest
performance in the cycle. The same pattern can be seen in
Figs. 3(b)–3(d). Another interesting feature that can be
seen is that when the load is at the middle and the condition
is right for improved performance (see above) the system
seems to endure comparatively much stronger forces: in
Figs. 3(b) and 3(c) one can see that the performance is
significant for loads of up to about 12kBT=�. This is
presumably because attaching the load to the middle cre-
ates a more balanced distribution of the forces in the link-
ers (still of opposite nature but of equal magnitudes; see
Fig. 2 and Table I).

Even when the performance of the motor is increased by
the opposing force, one still has a decreasing trend for the

FIG. 2 (color online). Force balance on the spheres and the
linkers for a swimmer moving to the right, when the external
load F (acting to the right) is attached to the (a) head, (b) tail, or
(c) middle of the swimmer. In each case, it is identified whether
each linker is under compression (C) or tension (T), with the
value of the force given (underneath).

TABLE I. The algebraic force f�� that should be used in
Eq. (5) to calculate the forward rates. The values for the
corresponding reverse rates can be obtained via f�� � �f��.

Transition Head Tail Middle

A! B � 1
3F � 2

3F � 1
3F

B! C � 2
3F � 1

3F � 1
3F

C! D � 1
3F � 2

3F � 1
3F

D! A � 2
3F � 1

3F � 1
3F
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swimming velocity because of the Stokes drag term in
Eq. (4). Using a linear approximation for J�F� ’ J0�1�
cF�=kBT� at small forces (where c is a positive constant of
order unity), one can write Eq. (4) as V�F� � V0�1�

� 1
18��aRV0

� c�
kBT
�F	, which implies that for forces much

smaller than the thermal activation force kBT=� the in-
creased motor performance can lead to increased swim-
ming velocity if the viscous drag on the swimmer is larger
than the thermal activation force. While this could be
extremely difficult to achieve as it requires unrealistically
high swimming velocities, it is an interesting fundamental
possibility that increased swimming velocity can be
achieved upon exerting opposing forces.

In conclusion, we have proposed and studied a simple
model of a low Reynolds number swimmer driven by a
kinetic engine. The main result is that the ability of this
swimmer to carry a load or to resist an opposing force
depends on where the load or the force is applied. This is
not linked to the stochastic nature of the present motor, but
also holds for a motor driven by a prescribed sequence of
internal stresses (to which the applied stresses add up).
Altogether, this shows that the description of such ma-
chines can go beyond a simple force-velocity relation,
more complex and maybe richer in functionality.
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FIG. 3 (color online). Motor performance function J�F�=J�0� versus the external force, when only one of the rates is enhanced to
1� � while the rest are kept fixed at 1. The plots correspond to the enhanced rate being (a) k0BA, (b) k0CB, (c) k0DC, and (d) k0AD, and
� � 50. In each case, the dashed (red) line corresponds to the load being attached to the head, the dotted (blue) line corresponds to
attachment to the tail, and the solid (green) line is for the middle attachment.
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