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We study the dynamics of annihilation of point defects in Langmuir monolayers. The absence of
hydrodynamic effects allows us to quantitatively relate the asymmetry in defect mobility to the elastic
anisotropy of the material, which in turn can be varied through the control of the surface pressure applied
to the monolayer. Using the proposed theoretical analysis, we are able to obtain rather elusive equilibrium
properties out of relatively simple dynamical measurements. In particular, we measure the elastic
constants and their pressure dependence.
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The study of defect dynamics is of general relevance in
many areas of physics. Of special interest is the study of the
interaction and annihilation of defect pairs. A remarkable
feature of this process, both observed experimentally and
numerically, although not fully understood, is the enhanced
mobility of the positively charged defect with respect to its
negative counterpart. In general, elastic anisotropy (in-
equality of the elastic constants) and hydrodynamic effects
arising from defect motion (backflow) play a role in ex-
plaining this asymmetry. In fact, the latter is dominant in
the context of bulk liquid crystals [1– 4], thus hindering the
possibility to develop a simple method to quantitatively
relate material elasticity to defect dynamics, which would
be an interesting alternative to traditional methods of de-
termining the elastic constants [5,6]. We address here the
somewhat opposite scenario by studying defect dynamics
in Langmuir monolayers spread at the air-water interface
[7]. Contrary to bulk liquid crystals, where rotational and
translational viscosities are of the same order of magni-
tude, local molecular rotation without hydrodynamic ef-
fects is possible in Langmuir monolayers and, thus, defect
dynamics can be simply traced back to the effect of mate-
rial elasticity. As a result, measurements of differential
defect mobilities enable us to probe the elastic anisotropy
of the two-dimensional material.

Here, we report on quantitative studies of defect dynam-
ics in a particular class of Langmuir monolayers with a
polar nematic arrangement. The pronounced observed
asymmetry of defect mobility is rationalized in terms of
a simple theoretical model that rules out backflow effects.
Indeed, coupling with the aqueous subphase hinders any
monolayer flow arising from in-plane rotation that accom-
panies defect motion [8]. The model is exploited to extract
the dependence of the elastic anisotropy on surface pres-
sure and to estimate the compressibility-dependent elastic
constants of the compressible 2D system. This indirect
procedure is demonstrated to be an advantageous alterna-
tive over direct measurements, unpractical in these quasi-
two-dimensional systems.

Experiments are performed in a shallow thermostated
Teflon cuvette where the monolayer is spread over an area
delimited by two mobile barriers, which control the surface
pressure. The monolayer is a cis and trans mixture of the
photosensitive azobenzene amphiphile 8Az3COOH [9].
Monolayers feature isolated birefringent trans-rich do-
mains (henceforth droplets) surrounded by an isotropic
cis-rich medium [10]. Mesoscale organization inside the
droplets is probed with a custom-built Brewster angle
microscope (BAM) [11].

For a wide range of experimental conditions, the orga-
nization of the amphiphilic molecules inside the circular
domains is characterized by a uniform tilt (around 45� [9])
with respect to the air-water interface normal. Molecular
ordering can thus be described by a two-dimensional vec-
tor field. Constant-angle anchoring at the droplet boundary
[9,12] results in the inclusion of inner point defects of total
charge �1 [13,14]. Small enough droplets feature a single
s � �1 defect near the center, and a pure bend texture
around the core (see Fig. 1).

Droplets with opposed chirality fuse abruptly (Fig. 1),
creating a pair of new point defects upon intersection [15].
Since the total charge must be preserved inside the closed
domain, we consistently assign a �1=2 charge to each
boundary defect. These semi-integer defects are neces-
sarily confined to the droplet boundary since they are not
allowed inside polar nematic domains. In the simplest
route to collapse, typical in the fusion of droplets of differ-
ent size [16], one of the originally central s � �1 defects
is annihilated in a two-step mechanism [Fig. 1(A)]. First it
migrates to merge at the boundary with one of the newly
created singularities, resulting in a �1=2 boundary defect.
The latter, and the remaining �1=2 boundary defect ap-
proach following an asymmetric dynamics along the con-
tour of the fused droplet, with �1=2 defects always
moving faster [see Fig. 1(B) for a representation of defect
trajectories]. Relaxation of the droplet shape following
coalescence is much faster than defect dynamics. As a
result, droplet circularity does not change measurably dur-
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ing the final stages of defect collapse, where a roughly
constant linear velocity along the curved boundary is ob-
served. The ratio of linear velocities in this regime is used
below to quantify the asymmetry in defect mobilities.

Recent numerical analysis [2] has shown that the effect
of elastic anisotropy and backflow cannot be decoupled in
the study of asymmetric defect mobilities in bulk liquid
crystals. We will argue that backflow can be neglected in
our system and thus one can propose a simplified model
where the study of defect dynamics can be directly related
to the material elastic constants. Absence of backflow
can be justified by comparing the rotational viscosity in
our system (� 10�10 kg s�1 [17]) with the much larger
effective translational viscosity resulting from the coupling
between the monolayer and the subphase [8]. This may be
estimated as the subphase viscosity (� 10�3 kg m�1 s�1)
times a characteristic length in the monolayer, i.e., the
droplet radius (� 50 �m). Actually, it has recently been
shown that complex reorientations of the molecular field
can take place in this system without noticeable hydro-
dynamic effects [18].

Under the previous assumptions, we propose a generic
free energy model that accounts for the lowest order dis-
tortions of the director field n,

 F �
Z
d2x

�
KS
2
�r � n�2 �

KB
2
�r 	 n�2

�
; (1)

where KS and KB are the splay and bend constants [5,6].
Earlier studies on this system suggest that the effect of
anisotropic boundary conditions can be neglected with
respect to inner elasticity in the regimes where pure bend
textures are obtained [10]. Strictly speaking, Eq. (1) should

include contributions from a density order parameter so as
to account for the finite compressibility of this system
[14,19]. Nevertheless, at a fixed lateral pressure, explicit
density contributions can be renormalized into effective
elastic constants, and Eq. (1) is of general applicability.

We will employ this free energy in order to propose a
model for the differential mobility of boundary defects
described above. Figure 1(a) shows that the director field
around 
1=2 defects rotates when defects move along the
curved boundary. Thus, the director field around a defect
moving along the boundary can be mapped into that of a
defect in rectilinear motion. On the other hand, each
boundary defect can be regarded as a 
1, with half its
spatial extend being virtual. As argued below, this allows to
extrapolate the results of rectilinear 
1 defect motion to
that of semi-integer boundary defects.

Let us consider an isolated point defect, and express the
director field around it in polar coordinates (r, �).
Minimization of Eq. (1) gives,

 �1� � cos2 �
�
@2 

@�2

�
� � sin2 

��
@ 
@�

�
2
� 1

�
; (2)

where  is the angle between n and the radial direction
[Fig. 1(C)]. Here, � � �KS � KB�=�KS � KB� is a measure
of the elastic anisotropy. �< 0 (resp. >0) favors splay
(bend) textures, and � � 0 is the isotropic case. For s �
�1, the energetically favorable solution to Eq. (2) for �>
0 is  � � 
�=2 (pure bend configuration), and  � � 0,
� for �< 0 (pure splay). For s � �1, the director field
around the defect is given by [20]

FIG. 1 (color online). (A) Experimental coalescence process of a clockwise and an anticlockwise bend domain at T � 32 �C and
� � 0:3 mN m�1 leading to a droplet with a single s � �1 defect [28]. BAM analyzer is set at 60� counterclockwise from the plane
of incidence, which includes the vertical axis in the images. A sketch of the molecular field is shown below each experimental image.
Merging of one of the inner s � �1 defects and one of the two �1=2 boundary defects created upon fusion (b) results in a 
1=2 pair
of boundary defects that attract and annihilate (d) following the arc lengths towards their meeting point shown in (B). The straight lines
yield the average linear velocity in the pseudoconstant velocity regime prior to collapse. Elapsed times from panel (b) are 90 s (c) and
124.6 s (d). The ruler is 100 �m long. Video image digitization and processing [29] is used to set the quasicircular droplet contour as
fixed in space. (C) Schematics of the angular coordinates defined in the text.
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�
1=2
dx; (3)

where the integration constant k� is determined by
���4�; k�� � 2�. Within a quasistatic approximation,
we assume that Eq. (3) describes the instantaneous director
field during rectilinear defect motion. The dissipation rate
per unit length will be � � �

R
dS�@�=@t�2 [21], where �

is the angle between the director field and the polar axis,
� �  ��, and � is a rotational viscosity of the medium.
Because of the symmetry of Eq. (3), differences in dis-
sipation for s � 
1 will be encoded in the angular part of
�, which is independent of the direction of motion of the
defect [22], and reads 1

2

R
2�
0 d��@�=@��2. Recalling the

definition of the defect charge, ���� 2�� � ���� �
2�s, the fact that @��=@� � �1, and using a general
inequality of functional analysis, one finds
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which proves that dissipation will generically be larger for
negative defects (with the equality holding for the isotropic
case). This results from the fact that anisotropy introduces
an inhomogeneous distortion only to the negative defect.
Since the dissipation is quadratic on the variation of the
director field, and the overall rotation of the director field is
fixed by topology, anisotropy increases the dissipation for
the negative defect but not for the positive one. This
implies that, due to elastic anisotropy, isolated positive
defects are always faster than negative ones. The power
supplied per unit length needed to maintain the defect
moving at a fixed velocity v is P � fv, where f is the
drag force, and must be equal to the dissipation rate �. This
leads to the expressions
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R
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�
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Here, rc is the core radius of the defect, and R represents a
macroscopic scale, which is taken here as the droplet
radius. Regardless of the accuracy of the logarithmic de-
pendence in the drag force expression [23], what is relevant
for our analysis of the relative velocities (see below) is the
fact that R and rc can be assumed to be roughly the same
for the two defects of opposite charges. More accurate
estimations of those parameters would result in a residual
sublogarithmic dependence on the elastic anisotropy,
which can be neglected.

Balance between the drag force and the elastic attraction
between defects allows us to express the ratio of the defect
velocities in terms of � alone using Eq. (5). Since dissipa-
tion results from distortions of the director field, 
1=2

boundary defects dissipate half as much as 
1 defects
so, in both cases,
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As seen in the inset of Fig. 2, asymmetry is only significant
for large�. Interestingly, the ratio v�=v� is invariant ifKB
and KS are interchanged [2], i.e., if � is replaced by ��
[24].

Although Eq. (6) is of more general validity, its useful-
ness is limited to regimes of constant defect motion. This is
precisely the case in the experiments reported in Fig. 1, so
Eq. (6) can now be exploited to determine the ratio KS=KB
by measuring defect velocities under different monolayer
conditions. To this end we have conducted experiments
varying the surface pressure, which is kept below
4 mN m�1. Above this value, the range of motion of the
slow defect cannot be resolved in our system. Similarly,
temperature is maintained at 32 �C, a compromise between
the hindered mobility at lower temperatures and the fast
dynamics above this value. Droplet radii were considered
in the range 30–60 �m, with no significant effect.

Experimental ratios of defect velocities (defined as the
linear velocity along the curved boundary) as a function of
lateral pressure are shown in Fig. 2 in terms of the mean
and standard deviation of several experiments. The ratio
v�=v� can be transformed, using Eq. (6), to yield � vs �
and, therefore, the ratio of the elastic constants as a func-
tion of � (Fig. 3). Our measurements can be combined
with the results of Feder et al. [17] whose analysis of
orientation fluctuations in this system yielded a value for
the geometric mean of KS and KB of �40
 25�kBT. This
way, we can estimate KS and KB as a function of �
(Fig. 3). In the zero-� limit (lowest anisotropy) KS ’
KB ’ 10�19 J. As � increases, there is a rapid increase
(resp. decrease) of KS (resp. KB) until � ’ 1 mN=m,
where further variation of these parameters cannot be
resolved. These values are consistent with estimations
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FIG. 2. Experimental measurements of the relative velocities
of boundary defects moving towards their annihilation as a
function of surface pressure. The inset is the graphical solution
of Eq. (6).
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found in the literature [14] and values extrapolated for thin
suspended liquid crystal films [25].

We can qualitatively relate these results to the known
tendency of azobenzene derivatives to form supramolecu-
lar aggregates (H-aggregates), whose presence can be
revealed here by spectroscopy methods [26]. In short,
aggregates form in such a way that the azobenzene planes
of neighboring molecules are parallel, stacking perpendic-
ularly to the molecular tilting direction. Because of this, a
splay arrangement of the molecular field inside the axi-
symmetric droplets would be energetically more demand-
ing than its bend counterpart, since the former would
impose a certain curvature on theH aggregates. The known
increase of the extension of aggregates with � [10] can
therefore justify the observation that splay distortions are
increasingly less favorable. In fact, molecules cease to
behave as individual monomers at � ’ 2 mN=m, which
may justify the levelling off of the elastic constants at
moderate pressures. Nevertheless, this qualitative argu-
ment cannot explain why the behavior is so dramatically
different even with modest extension of the aggregation.
Molecular dynamics simulations could be employed to
address these issues [27].

In summary, we have studied Langmuir monolayers
where defect dynamics can be analyzed in the absence of
backflow. As a consequence, differential defect mobilities
can be traced back to elastic anisotropy. We have shown
that this simplified scenario can be exploited with the aid of
a simple model to use dynamical measurements to gain
quantitative knowledge of the dependence of rather elusive
material parameters, here the elastic constants, on a basic
thermodynamic control parameter of the monolayer such
as the surface pressure.
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FIG. 3. Anisotropy parameter, �, as a function of �, as
obtained from the data in Fig. 2. The inset shows the value of
the elastic constants KS (�), and KB (�) estimated as described
in the text.
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