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Crossed-Ratchet Effects for Magnetic Domain Wall Motion
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We study both experimentally and theoretically the driven motion of domain walls in extended
amorphous magnetic films patterned with a periodic array of asymmetric holes. We find two crossed-
ratchet effects of opposite sign that change the preferred sense for domain wall propagation, depending on
whether a flat or a kinked wall is moving. By solving numerically a simple ¢* model we show that the
essential physical ingredients for this effect are quite generic and could be realized in other experimental
systems involving elastic interfaces moving in multidimensional ratchet potentials.
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The propagation of domain walls in thin ferromagnetic
films is a problem of great current interest. It provides both
the basis for a wide number of modern magnetic devices
[1] and an excellent experimental system to study the basic
physics of an elastic interface in the presence of either
ordered or random pinning defects [2—6]. Such physics has
been indeed recently considered in many other experimen-
tal systems involving interfaces, such as ferroelectric do-
main walls [7], contact lines of liquids menisci [8], or
fractures [9]. Furthermore, it is relevant for systems in-
volving periodic elastic manifolds, such as vortex lattices
in superconductors [10], charge density waves [11] or
Wigner crystals [12].

A case of particular interest appears when the pinning
potential is asymmetric, favoring the propagation of the
elastic interface in one direction. This gives rise to several
ratchet effects [13], which are a potential tool to control
motion at micro- and nanoscales in a variety of systems
[14]. One of the first examples of ratchet potentials in
magnetism is the use of “angelfish” patterns for control-
ling the sense of propagation of bubble domains in shift
registers [15]. Much more recently, the asymmetric motion
of domain walls (DWs) in triangular [16] or notched [17]
nanowires has also been reported. In all previous cases,
DW propagation is restricted to a narrow 1D path (either by
narrow guide rails or by the nanowire geometry) and its
transverse wandering can be neglected. Then the wall
behaves essentially as a point particle in a 1D asymmetric
potential. However, in a thin extended film, a DW is an
elastic line that can distort all along its length in response
to the 2D asymmetric pinning potential. The competition
between elasticity and pinning is a purely collective be-
havior and can thus yield novel ratchet phenomena in 2D.

In this Letter, we study the propagation of DWs in
extended magnetic films patterned with a periodic array
of asymmetric holes. We observe experimentally, for the
first time, two crossed-ratchet effects of opposite sign that
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change the preferred sense for DW motion depending on
whether a flat or a kinked wall is moving. These crossed
effects have an interesting consequence with potential
applications: the system keeps memory of the sign of the
last saturating state even in a zero magnetization configu-
ration. Finally, by identifying the essential physics of the
ratchet effect using a generic ¢* model, we show that this
effect could be realized in other multidimensional ratchet
systems involving the motion of elastic interfaces.
Amorphous 40 nm thick magnetic Co-Si films have been
fabricated by sputtering with a well defined uniaxial an-
isotropy and a low coercivity [18]. In these films, easy axis
(EA) magnetization reversal takes place by propagation of
180° Néel walls that tend to lie parallel to the EA [18]. A
500 X 500 wm? ordered array of asymmetric antidots has
been patterned by a combination of e-beam lithography
and an Ar" etching process [18]. Each hole is shaped as a
small arrow pointing perpendicular to the EA [Fig. 1(a)].
Two senses of propagation for a DW lying along the EA (Y
axis) may be defined: “forward” ([F), from left to right,
i.e., towards the direction pointed by the arrows, and
“backward” (B), from right to left. The asymmetric anti-
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FIG. 1 (color online). (a) Scanning electron microscopy image
of an array of asymmetric holes. The EA direction is indicated.
The inset is a detail of a single arrow hole. (b) MOKE hysteresis
loops measured at the array (circles) and at the left and right
(triangles and squares) unpatterned regions.
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dots are arranged in a square array parallel to the EA, with
a 20 X 20 um? unit cell, centered in a 500 wm wide path
and separated from the rest of the film by a 5 um wide
trench. Magnetic properties have been characterized both
by transverse magnetooptical Kerr effect (MOKE), using a
setup with a laser focused in a 300 wm spot in the desired
sample area [18], and by MOKE microscopy [19]. The
magnetic field H is applied parallel to the film plane and
along the EA.

Figure 1(b) shows hysteresis loops measured both at the
array area (circles) and at the unpatterned regions at the left
(triangles) and right (squares) sides of the array. The co-
ercive field (H.) increases from 6.5 Oe in the continuous
film to 8.6 Oe in the array, indicating that the arrow holes
act as effective pinning centers, useful to control the DW
motion. This difference in coercivity implies that there is a
field range, approximately between 6.5 and 8 Oe, where the
continuous regions have been reversed but not the pat-
terned area, which will be bounded by two DWs at its
left and right sides. This is indeed observed in the Kerr
microscopy images shown in Figs. 2(a) and 2(b) taken at
H = 8 Oe after saturating the sample with a large negative
field. A DW can be identified in each image as the line
separating the dark-clear contrast regions (i.e., negative
and positive magnetization). The walls are located either
at the first [Fig. 2(a)] or at the last [Fig. 2(b)] column of
defects, indicating that they cannot move further inside the
array area due to the antidot pinning. Upon increasing the
field to H = 8.4 Oe, the left wall penetrates the array [see
Fig. 2(c), in which the left wall is pinned between the 4th
and 5th antidot columns]. Then, at H = 8.8 Oe [Fig. 2(d)]
the left wall has propagated in the F direction, up to the
17th defect column, whereas the right wall has not been yet
able to move. Finally, for larger fields, both walls coalesce
completing the magnetization reversal at the array area
[Fig. 2(e)]. A similar image sequence for the descending
field branch in the hysteresis loop shows again a wall
entering from the left and moving in the F direction,
only with an overall magnetization sign change. These
reversal sequences clearly show that the depinning field
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FIG. 2. (a)—(e) Sequence of MOKE microscopy images taken

in the ascending field branch of the hysteresis loop after satura-
tion in a negative field.

for F wall propagation Hy =~ 8.4 Oe is lower than the
field for B wall depinning Hg = 8.8 Oe (only a lower
bound can be obtained in this case) indicating that the
arrow-shaped holes act as asymmetric pinning centers for
the DWs. The easy direction of motion F is that in which
the length of the pinned wall between two antidots in-
creases smoothly, in agreement with the reported behavior
in nanowires of triangular cross section [16,17].
Preliminary micromagnetic simulations with the OOMMF
code [20] also confirm this behavior [21].

To study the motion of a single DW inside the array, the
following experiment has been performed [see H(r) se-
quence in Fig. 3(a)]: first, to introduce a DW in the array, a
complete major loop is performed between ¢ = 0 and ¢ =
0.25 s; then, the sample is saturated in a large negative
field; next, H is increased up to the positive coercivity, so
that the DW enters into the array, and then H is decreased.
Now, at t = 1, a triangular field ramp of increasing am-
plitude H,,,, is applied to the sample so that the DW is
pushed F and B. The magnetization response M(z) is
shown at the bottom of Fig. 3(a), both in the patterned
and unpatterned regions. Surprisingly, during several
cycles (between f, and t;), there is a net decrease in M at
the array [see inset of Fig. 3(a)], indicating B DW motion.
The sign of the M /dt slope at t = ¢, depends only on the
sign of the saturation magnetization Mg before introducing
the wall in the array (inset of Fig. 3), and not on the sign of
dH/dt, as would be in a standard accommodation effect
[22]. Figure 3(b) shows several stable minor loops, mea-
sured with a similar H(¢) as in Fig. 3(a), but with a constant
amplitude H,,,, < 8 Oe in the triangular ramp after ¢, and
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FIG. 3 (color online). (a) H(¢) used to introduce a wall in the
array and measure its propagation within it (top); M(¢) response
in the array (red circles) and in the continuous film (black
squares). The inset is an enlargement of the decrease (increase)
in M(t) from fy, to t; in the array after negative (positive)
saturation [top or red (bottom or blue) line]. (b) Minor loops
measured after introducing a wall in the array at the positive H.
(c) Coercive field asymmetry vs. minor loop amplitude in the
array (red circles) and in the continuous film (black squares).
The inset shows the results of X axis reflection and Y axis
reflection (broken symmetry in the array) on a kink moving
upward.
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centered along the magnetization axis. These minor loops
exhibit a clear asymmetry, quantified by the difference
between the positive and negative coercivities AH, =
HEC — HdcesC of about 0.2 Oe [Fig. 3(c)]. Different from
exchange bias, the sign of AH depends on the sign of M
before introducing the DW, so that coercivity is always
lower when the DW is pushed in the B direction.

From these data, two main results are worth remarking:
first, the system keeps memory of the last saturating state
that can be read in the sign of AH. or of IM/dt at t = .
Second, there is a clear change between the behavior
observed in Fig. 2, in which the DW penetrates into the
array more easily in the F direction, and the minor loop
experiment of Fig. 3, in which DW motion within the array
is easier in the B direction.

To understand these opposite effects, a crucial observa-
tion is the change in the wall configuration as it enters the
array: in the continuous area, the wall is essentially flat
[Figs. 2(a) and 2(b)] but it develops kinks when it is pinned
into the array [Fig. 2(c)]. This suggests an extra mechanism
for DW motion in the minor loop experiment, through
upward (downward) [U (D)] kink propagation, that is
possible in our geometry but not in the more restricted
nanowire case where the DW cannot develop kinks.
Indeed, by taking into account the reflection symmetries
of the array as depicted in the inset of Fig. 3(c), it is easy to
see that a kink propagating ‘U (I) would be equivalent to an
antikink propagating D (II) but not necessarily equivalent
to a kink propagating D (IV) or to an antikink propagating
‘U (1) (see also the insets in Fig. 4). Therefore, the array
could in principle induce an asymmetric pinning for kink
motion, i.e., perpendicular to the previously described
ratchet affecting the F/B propagation of the flat wall
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FIG. 4 (color online). Numerical results for the magnetic re-
sponse of a kinked domain wall vs applied magnetic field. The
initial state at H = 0 is a wall with a kink (antikink) pair [insets
(a) and (A)], which evolves asymmetrically with respect to H
and —H. The insets are snapshots of the local magnetization ¢,
for different pairs of fields of equal magnitude, marked in the
magnetization curves as d, ..., e, in M(H), and as A,...E in
—M(—H). Critical fields show that F motion is easier for a flat
wall but B motion is easier for the kinked wall.

[23]. Most interestingly, the experimental results of
Figs. 2 and 3 suggest that these crossed-ratchet effects
must be of opposite sign.

To check the above scenario we consider the competi-
tion between drive, elasticity, and asymmetric pinning on a
single driven DW. For this purpose we simulated the
paradigmatic ¢* model for a scalar order parameter
é(x, y;1), in which a DW provides a smooth transition
between energetically equivalent minima of a simple free
energy [24]. We will show that this approach, although
simplistic as it avoids many of the complications of the full
micromagnetic model, qualitatively reproduces the experi-
mental results. Consequently, the aforementioned compe-
tition between drive and elasticity of the DW, which is an
essentially 2D feature absent in previous 1D works and that
is fully captured by the ¢* model, is the main physical
ingredient for the effect. Most importantly, reproducing the
effect in the ¢* model allows us to demonstrate the general
nature of the observed ratchet phenomena. In our model
&(x, y; 1) can be thought as a projection of the coarse-
grained magnetization vector along the easy direction.
We consider the evolution of ¢ in the domain  — A,
which includes all the space (), except the region A
occupied by antidots. In order to model the absence of
magnetic material in A, we set Neumann boundary con-
ditions d,¢|,, = 0 at the antidot borders 9 A . Finally,
considering a purely dissipative dynamics, the equation of
motion for ¢ reads [24]

ndp = V2 + &ld — ) + H, (D

where c is the elastic stiffness of the order parameter, € is
proportional to the local barrier separating the two equiva-
lent minima of the free energy density, H represents the
magnetic field, and the friction coefficient 7 sets the micro-
scopic time scale. The relevant parameters ¢ and €, will

determine both the width £ « ,/c/¢€, and the line tension
o «  Jcey of the DW [24].

For the simulation we chose €, = 1 = 1 and c¢ such that
& is 10% of the characteristic size of the antidots, which
approximately corresponds to the realistic situation [18],
although we obtain qualitatively the same behavior for a
finite range of parameters. We solve numerically Eq. (1) in
a L, X L, box with periodic boundary conditions in the ¥
direction, and model the asymmetrical antidots as a rect-
angular array of triangular holes pointing to the positive X
direction (see insets in Fig. 4). To ensure the presence of a
DW along the sample, we set ¢(x =0,y;¢) =1 and
¢(x = L,,y;t) = —1 as boundary conditions in the X
direction, and then probe the response of the DW to differ-
ent, positive and negative H. Since we are interested in the
response to constant or low-frequency fields, we will only
analyze the stationary magnetization M(H), starting with
the particular initial condition of a single flat DW with a
kink (antikink) pair (see insets A and a in Fig. 4).

In Fig. 4 we show the magnetization M vs H starting at
H = 0 with the kink (antikink) pair [21]. As indicated by
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the vertical dotted lines we can clearly distinguish four
critical fields: Hq; corresponds to the ‘U (D) depinning of
a kink (antikink), cases I and II in Fig. 3(c), which amounts
to a net motion of our initial DW to the left (B); Hyp is the
depinning field for the D (‘U) motion of a kink (antikink),
cases IV and Il in Fig. 3(c); H 7 and Hg corresponding to
the F and B depinning fields of flat walls, respectively. We
find that Hyy < Hp < Hy < Hgp. As expected, transport at
low fields |H| < Hy is dominated by the presence of
mobile kinks. More interestingly, we have Hy < Hp.
This implies that a net directed transport of the wall in
the B direction can be obtained under a low-frequency
ac field of amplitude Hq < |H| < Hp, in qualitative
agreement with the behavior of the magnetization in the
minor loop experiment (Fig. 3). Finally, by increasing the
magnetic field amplitude |H| we have an inversion of the
rectification for flat walls, since Hg > H 7, i.e., the wall as
a whole moves more easily in the F direction, as in the
experiments (cf. Fig. 2). The simulations also show which
are the key ingredients for the inversion in the rectification
between these two crossed-ratchet effects: whereas the B
motion of a flat wall (Fig. 4, inset E) involves a sudden (i.e.,
long-range correlated) depinning from the stable position
at the base of the triangles, making it the hard direction of
motion, the B motion of a kinked wall involves the U
motion of a kink (Fig. 4, inset B), which gradually peels off
the wall from the triangle bases thus making this the easy
direction of motion for a kinked wall. It is worth noting
that this behavior is due to the generic interplay between
elasticity, pinning, and drive: while the first two tend to
minimize the line energy of the DW by, respectively,
straightening all segments and by optimally using the holes
bridging them, the applied field tends to increase the area
behind the DW with ¢ H > 0. This leads to the asymmetric
depinning configurations and forces, responsible for the
observed crossed-ratchet effects.

In summary, our experimental and theoretical study of
the DW propagation across an array of asymmetric holes
has revealed the existence of two crossed-ratchet effects:
the first one favors F motion of a flat wall while the second
acts on the ‘U or D kink propagation favoring net B wall
motion at low fields. As a result of the interplay between
both ratchets, the system keeps memory of the sign of the
last saturating state even in a zero magnetization configu-
ration, thus opening an interesting possibility for future
applications in memory devices. This novel effect relies
completely in the extended nature of the DW in 2D, which
allows excitations transverse to the direction of propaga-
tion, and not on the particular asymmetry of the pinning
potential. Moreover, the main physical ingredient for the
crossed ratchets can be identified as the interplay between
elasticity, asymmetric pinning, and drive, so that they
could be realized in other experimental systems involving
the motion of elastic interfaces or domain walls in multi-
dimensional ratchet potentials.
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