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We investigate magnetic-field asymmetries in the linear transport of a mesoscopic conductor interacting
with its environment. Interestingly, we find that the interaction between the two systems causes an
asymmetry only when the environment is out of equilibrium. We elucidate our general result with the help
of a quantum dot capacitively coupled to a quantum Hall conductor and discuss the asymmetry
dependence on the environment bias and induced dephasing.
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More than two decades ago it became clear [1] that the
Onsager-Casimir symmetry relations [2,3] are crucial to
understanding the transport properties of mesoscopic con-
ductors. These symmetries are fundamentally a conse-
quence of the microreversibility of the scattering matrix
that describes the conductance of a phase-coherent con-
ductor, dictating that the two-terminal linear conductance
G must be symmetric under reversal of the external mag-
netic field B. An interesting consequence is that the phase
of the Aharonov-Bohm conductance oscillations of a solid-
state interferometer with a quantum dot embedded in one
of its arms can take the values 0 or � only, thus leading to
phase rigidity [4,5].

The scattering approach to mesoscopic transport as-
sumes that the mesoscopic conductor preserves the elec-
tron quantum phase while inelastic processes giving rise to
irreversibility take place only in the reservoirs that feed and
draw the current. Therefore, close to equilibrium G is a
function of the transmission T evaluated at the Fermi
energy EF common to all terminals and the Onsager sym-
metry implies T�B� � T��B�. However, the system inevi-
tably interacts with the environment which may give rise to
irreversible processes. Theoretically, the Onsager symme-
try has been proven to be valid for an isolated conductor.
Therefore, it is an interesting question whether a conductor
interacting with its environment still fulfills the symmetry.
In this Letter, we predict that this interaction leads, in fact,
to magnetic-field asymmetries (or, briefly, magnetoasym-
metries) when the environment is driven out of equilib-
rium. In addition, our theory confirms why magnetic-field
symmetries are preserved in previous experiments on two-
terminal conductors even if they cannot avoid interactions
with its environment.

Recent works [6,7] have shown that magnetoasymme-
tries arise in nonlinear mesoscopic transport, a fact which
has been observed experimentally [8–13]. In contrast, here
we address the magnetoasymmetry of the linear meso-
scopic conductance when the environment is out of
equilibrium.

Consider the model system sketched in Fig. 1. System C
is a mesoscopic conductor coupled to reservoirs L and R.
The environment, denoted as system D, is modeled as a
second conductor in close proximity with system C. There
exists a Coulomb interaction coupling conductor and en-
vironment electrons, but no particle exchange is permitted
between the two subsystems. Experimentally, the environ-
ment can be a quantum point contact (QPC), a quantum
Hall bar or any other system whose electron states depend
on the electronic trajectory across the conductor. The
environment can be driven out of equilibrium by applying
a bias between reservoirs X and Y. As a consequence, we
must consider scattering of two particles described by the
following (asymptotic) states: j1i � jLiC � jXiD, j2i �
jLiC � jYiD, j3i � jRiC � jXiD, and j4i � jRiC � jYiD.
j � � �iC and j � � �iD represent the electron states at systems
C and D, respectively.

Suppose that an electron from lead L is injected into the
conductor. Before scattering, the initial density matrix �in

is given by

 �in � �jLihLj�C � �nXjXihXj � nY jYihYj�D; (1)
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FIG. 1. Schematic representation of the system under consid-
eration. System C is a conductor capacitively coupled to an
environment (system D).
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where nX and nY are the transport electrons in system D
that originate from leads X and Y, respectively. The nor-
malization condition, Tr�in � 1, gives the constraint nX �
nY � 1. At equilibrium, one has nX � nY � 1=2 whereas
out of equilibrium we rewrite �in as

 �in �
1
2�1� ���j1ih1j �

1
2�1� ���j2ih2j; (2)

where �� � nX � nY represents a nonequilibrium parame-
ter. At small bias, �� is proportional to the bias voltage
while very far from equilibrium �� � 1. The limit of
�� � 1 is discussed in Ref. [14]. Upon scattering, the
output density matrix is [15] �out � Ŝ�inŜ

y, where Ŝ is
the two-particle scattering matrix with elements Sij �
hijŜjji (i; j � 1; . . . ; 4). Note that Ŝ describes scattering
between two electrons in different conductors [16]. We
emphasize that Ŝ cannot, in general, be written as the
product of two single-particle scattering matrices and that
this nonseparability is precisely due to the interaction
between the two systems [17].

The transition operator, T̂, gives the transmission proba-
bility for an electron in system C, T � Tr��outT̂�. It reads
T̂ � �jRihRj�C � ID � j3ih3j � j4ih4j , where ID is the unit
operator in system D. Then we find

 T � 1� nX�jS11j
2 � jS21j

2� � nY�jS12j
2 � jS22j

2�; (3)

where unitarity of Ŝ has been used.
We introduce the magnetoasymmetry factor � �

T�B� � T��B�. Microreversibility implies that Sij�B� �
Sji��B�. Hence, we infer from Eq. (3) that

 � � ���jS12j
2 � jS21j

2�: (4)

Quite generally, one has jS12j
2 � jS21j

2 and then the trans-
mission through the conductor is clearly not symmetric
under reversal of the magnetic field. Notably, the asymme-
try is proportional to ��; thus Eq. (4) predicts that at small
bias the magnetoasymmetry in the conductor grows line-
arly with the voltage applied in system D. Below we
perform numerical simulations in a realistic system that
confirms this prediction.

Our argument can be easily extended to the case where
the nonequilibrium situation of system D includes more
than two leads. We note that Eq. (4) is valid when electrons
are interacting within each subsystem and also when the
electron at system C interacts with more than one electron
at D, but the problem then becomes involved because one
should resort to a multiple-particle scattering matrix.
Interestingly, the magnetoasymmetry vanishes when the
environment is in equilibrium (�� � 0), and it does not
depend on a specific model for the environment. This
explains why all linear-transport experiments satisfy the
Onsager symmetry even though the conductors cannot be
isolated from uncontrolled interactions with their
environments.

It is clear from Eq. (4) that the magnetoasymmetry is
nonzero only to the extent that Ŝ is nonseparable; i.e.,

jS12j
2 � jS21j

2 if Ŝ is given by the product Ŝ � ŜC � ŜD,
where ŜC and ŜD are the single-particle scattering matrices
of systems C and D, respectively. Unitarity of ŜD is neces-
sary in deriving this relation. In Ref. [18], Ŝ is expressed in
terms of the scattering matrix of the uncoupled systems to
leading order in the interaction coupling strength and the
correction term of the transmission probability of the first
system is found to depend on the injectivity of lead X of the
second system. But the injectivity alone is not invariant
under field reversal [6]. Therefore, T need not be an even
function of B due to interaction between the two systems.

We focus on the zero temperature case for simplicity and
assume that electrochemical potentials of leads X and Y are
EF � eVD=2 and EF � eVD=2 with VD the bias of system
D. In a two-dimensional conductor, nX / EF � eVD=2 and
nY / EF � eVD=2. Using the constraint nX � nY � 1, we
obtain the nonequilibrium parameter �� � nX � nY �
eVD=2EF.

Let us now illustrate the general result given by Eq. (4)
with an instructive example as depicted in Fig. 2. We
consider resonant tunneling through a quantum dot which
is capacitively coupled to the top edge of a quantum Hall
conductor, which works as the controllable environment.
We assume that the filling factor is � � 1 and thus current
is carried by two edge states along opposite sides of the
sample.

In addition, we consider a QPC constriction that parti-
tions the current injected from lead X with probability Td.
For the moment, consider the case Td � 1. Qualitatively, it
is clear that the current traversing the dot, even close to
equilibrium, is not an even function ofB. This follows from
the fact that the potential of the edge state Ue is in equi-
librium with the electrochemical potential of the injecting
lead. Then, Ue � VX for B> 0 and Ue � VY for B< 0.
Since the conductance through the dot depends on the local
potential at the dot Ud, and Ud, in turn, depends on Ue via
the capacitive coupling, we must have, quite generally,
G�B� � G��B� [19].
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FIG. 2. Sketch of a quantum dot capacitively coupled with the
top edge of a quantum Hall bar for B> 0. The edge state is
transmitted at the QPC with probability Td. For B< 0 the arrow
directions are reversed.
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We investigate the case in which Ud reacts continuously
to a change inUe and treat interactions in a mean-field way.
We describe the scattering through the dot with a Breit-
Wigner resonance with level position "0 and broadening
� � �L � �R. �L (�R) denotes the resonance broadening
contribution from the left (right) lead. To be definite, we
take "0 and � invariant under B reversal, which is true at
equilibrium. To separate equilibrium and nonequilibrium
contributions, we consider the potential Ud � Ueq � �U.
Then, away from equilibrium the screening potential �U
follows from the charge neutrality condition which estab-
lishes that the net charge �q � qneq � qeq must be equal to
the polarization charge permitted by electrostatics:

 �q�VL; VR;Ud� � C�Ueq � �U�Ue�: (5)

The charge injected from the left and right electrodes,
qneq�

REF�eVL
�1 DL�E�eUeq�e�U�dE�

REF�eVR
�1 DR�E�

eUeq�e�U�dE, is given by the injectivities D��E� �
�e2=2����=j��E�j2 [20], where � � �L;R� and ��E� �
E� "0 � i�=2. The equilibrium charge, qeq �REF
�1Dd�E� eUeq�dE, depends on the total density of

states, Dd � DL �DR. In Eq. (5), C is the geometrical
capacitance between the edge state and the dot. If the
density of states of the edge state De is much larger than
C=e2, we simply have Ue � VX for B> 0. In the general
case, we find

 Ue �
CUd � e

2DeVX
C� e2De

(6)

for B> 0. In the last equation, VX should be replaced with
VY for B< 0. Upon inserting Eq. (6) in Eq. (5), we obtain
�q � C��Ueq � �U� VX�, where C�1

� � C�1 �

�e2De�
�1 is the electrochemical capacitance.

Equation (5) is to be solved self-consistently. Once we
numerically find �U, we can assess the current,

 I �
2e
h

Z EF�eVL

EF�eVR

�L�R
j��E� eUeq � e�U�j2

dE; (7)

and the linear conductance G � dI=dVjV�0 with V �
VL � VR. The upper inset of Fig. 3 shows results for G
as a function of the equilibrium level position eUeq for a
voltage bias �VX � VY � VH=2 � �=2e applied in the
Hall bar. We observe that G differs for opposite B orienta-
tions. The reason for the asymmetry is uniquely due to the
asymmetry of the potential �U (see the lower inset of
Fig. 3) arising from the asymmetry of the Hall bar injec-
tivity. Thus, we present in Fig. 3 calculations of the dimen-
sionless magnetoasymmetry factor ~��	G�B��G��B�
=
	G�B��G��B�
 as a function of VH for eUeq � � and
various C�. These results are central to our discussion. The
magnetoasymmetry is larger for larger C� since the inter-
action coupling to the edge state is stronger. Of course, in
the limit C� ! 0 (which amounts to C! 0), the magneto-
asymmetry vanishes, fulfilling the Onsager symmetry re-
lation. It also vanishes in the limit of an equilibrium

environment (VH ! 0). Moreover, ~� is linear with VH
for small VH, in excellent agreement with Eq. (4) [21].
Saturation in ~� takes place for large VH and C�, for which
the precise form of the local density of states starts to play a
role.

Let us now consider the case where the dot is coupled to
a partitioned edge state. There is a probability Td (Rd �
1� Td) that the edge state is transmitted (reflected) from
lead X to Y (X) through the QPC. For nonzero C, we find

 Ue�B> 0� �
e2De�TdVX � RdVY� � CUd

C� e2De
: (8)

For B< 0 one replaces VX with VY in Eq. (6). As a result,
Ue is B asymmetric for nonzero Td (for Td � 0 the sym-
metry is restored) and depends in a generic way on Td only
for B> 0.

More interestingly, this geometry gives rise to magneto-
asymmetry of dephasing. Dephasing in the dot is caused by
current partition in the Hall bar [22–28]. It is intimately
related to the possibility of extracting charge state infor-
mation of the dot from the relative phase shift between the
transmitted and the reflected beam at the QPC. For B> 0,
Coulomb interaction induces dephasing because only the
transmitted electron undergoes a phase shift. For B< 0,
however, dephasing is not induced because the dot inter-
acts with the Hall bar before the electrons arrive at the
QPC. Therefore, it is clear that the magnetoasymmetry of
linear transport is caused not only by the asymmetry of the
local potential of Eq. (8) but also by the asymmetry of
dephasing.

Dephasing induces an additional broadening for B> 0:
�! �� �� with �� � �TdRdVH, where � is a constant
which depends on the details of the interaction between the
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FIG. 3 (color online). Magnetic-field asymmetry of the linear
conductance through the dot shown in Fig. 2 for EF � "0 � 0,
�L � �R � �=2 � 0:1, and eUeq � � as a function of the
voltage bias in the Hall bar VH . Upper inset: Linear conductance
at different polarizations of the magnetic field. Lower inset: Self-
consistently calculated screening potential. In the insets we take
C� � 0:1 and eVH � �.
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edge state and the dot [24–28] (� � 0 for B< 0). Since
our goal is to offer a simple picture of the effect, we adopt
the phenomenological voltage probe model [29]. It as-
sumes a fictitious voltage probe attached to the dot with
coupling ��. The condition I� � 0 determines the poten-
tial at the probe, V�. Every carrier which enters the probe,
is reemitted into the dot with a completely unrelated phase,
thereby giving rise to dephasing. Thus, we add a termREF�eV�
�1 D��E� eUeq � e�U�dE on the left-hand side

of Eq. (5) and a current contribution �2e=h��REF�eVL
EF�eV�

�L��=j��E� eUeq � e�U�j2dE to Eq. (7).

Figure 4 shows the effect of current partitioning in ~�.
The amount of dephasing is tuned with Td. (To emphasize
the role of Td in the asymmetry we use a small � � 10�3.)
When Td � 0, Ue � VY independently of the B direction.
As a result, ~� � 0. When Td increases, ~� enhances mono-
tonically. For higher VH, ~� becomes larger in agreement
with Fig. 3. Finally, in the inset we plot ~� as a function of
VH for decreasing values of Td, which also demonstrates
that ~� vanishes for VH ! 0.

In conclusion, the statement that the two-terminal linear
conductance must be symmetric under reversal of the
magnetic field is widely accepted and has been exhaus-
tively confirmed. However, conductors inevitably interact
with the external environment. We have shown that a
magnetic-field asymmetry appears even in the linear re-
sponse when the environment is out of equilibrium. This
situation can be realized with another conductor in close
proximity applying an electric bias across it. Importantly,
we predict that the asymmetry depends on the two-particle
scattering matrix. We have examined a quantum dot
coupled to a quantum Hall bar and found that the asym-
metry grows with the Hall bar bias and the interaction
coupling strength. It also leads to an asymmetry of dephas-
ing when the Hall current is partitioned.
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FIG. 4 (color online). Magnetic-field asymmetry as a function
of the QPC transmission for various biases applied to the Hall
bar VH. Parameters are EF � "0 � 0, �L � �R � �=2 � 0:1,
C� � 0:5, and eUeq � �. Inset: Asymmetry versus VH for
different QPC transmissions.
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