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Topological Confinement in Bilayer Graphene

Ivar Martin,1 Ya. M. Blanter,2 and A.F. Morpurgo2
YTheoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87544, USA

2Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
(Received 28 September 2007; published 23 January 2008)

We study a new type of one-dimensional chiral states that can be created in bilayer graphene (BLG) by
electrostatic lateral confinement. These states appear on the domain walls separating insulating regions
experiencing the opposite gating polarity. While the states are similar to conventional solitonic zero
modes, their properties are defined by the unusual chiral BLG quasiparticles, from which they derive. The
number of zero mode branches is fixed by the topological vacuum charge of the insulating BLG state. We
discuss how these chiral states can manifest experimentally and emphasize their relevance for

valleytronics.
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Most condensed matter systems acquire a gap in single
electron excitation spectrum at low temperatures. Typi-
cally this happens as a result of spontaneous symmetry
breaking, as in the case of superconductors or charge- and
spin-density-wave materials. The gap opens due to the
interaction of electrons with a slow bosonic mode repre-
senting the order parameter (OP). Yet, for certain topologi-
cally nontrivial configurations of OP, zero-energy
fermionic states reemerge. Examples are Andreev states
that form at the domain walls in superconductors [1], states
in the superconducting vortex cores [2], and solitons in
polyacethylene [3]. Similarly, in cosmology, it has been
suggested that our 3 + 1 dimensional space with its ex-
tremely low elementary particle masses may represent a
membrane or a string in a higher-dimensional inhomoge-
neous Higgs vacuum [4]. The zero modes may exhibit a
number of interesting phenomena, including fermion num-
ber fractionalization [5] and chiral anomaly [6]. In con-
densed matter, similarly to cosmology, the zero modes
originate from the Dirac equation, which emerges as an
effective (linearized) description of physics near the Fermi
surface.

In this Letter we demonstrate that zero modes can also
emerge in electrostatically gated bilayer graphene (BLG)
structures (Fig. 1). These modes, however, are different
from all the examples from condensed matter and high-
energy physics that we know of, as they derive not from the
Dirac fermions [5,7], but from the unusual low-energy
chiral modes of BLG [8,9], which have quadratic disper-
sion and zero gap between particle and hole bands. When
electrostatic bias V is applied between the layers, a gap of
the magnitude |V| opens between the particle and hole
bands [10]. The interlayer bias plays a role analogous to
an OP, but is externally runable. By applying inhomoge-
neous bias one can spatially confine the low-energy states
to the regions with low gap, e.g., to a one-dimensional (1D)
channel. However, in addition to the conventional confine-
ment by constant-polarity potential, in the case of BLG,
there is a possibility of topological confinement, with the
sign of the confining potential changing across the channel
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(Fig. 1). We find that the topological confinement leads to
the formation of 1D chiral zero modes. In each valley of
the graphene band structure there are two such modes (per
spin), both carrying electrons in the same direction (oppo-
site for the two valleys). The robustness of the zero modes
and their chiral nature are ensured by the topological
structure of the gapped bulk states. These modes are likely
to influence transport in BLG with smooth potential dis-
order [11]. They may also have implication for valley-
tronics [12], as they can enable the fabrication of valley
filters and valves, which can be experimentally realized
with existing technology.

The low-energy (one-valley) bilayer Hamiltonian with
bias V(x) applied between the layers is [8,10]

—V(x)/2 cart 0 0
_ cm —V(x)/2 r 0
H 0 N Vix)/2  emt | M
0 0 cTr V(x)/2

where c is the Fermi velocity, = = p, + ip,, at=p, -
ipy,and 7 is the interlayer coupling. The Hamiltonian acts
in the space of four-component wave functions (4, ¥p;,
Y42, ¥po), where subscript letters represent sublattice and
numbers—the layer (we included here only one valley,
assuming that V(x) is smooth enough not to cause inter-
valley transitions). This Hamiltonian provides a good de-
scription of BLG as proven by recent experiments [13]. At

FIG. 1 (color online). Side view of a gated bilayer graphene
configuration with the voltage kink. The region where the
interlayer voltage changes sign (channel) supports bands of
chiral zero modes (dashed line). The conventional (nontopolog-
ical) confinement would correspond to the same polarity of bias
on both sides of the channel.
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low energies and constant gate voltages, V < ¢, the
Hamiltonian can be further reduced [14],
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Here p = ,/p? + p}. The remaining components of the

wave function have predominantly A1 and B2 character.
The spectrum of the Hamiltonian is

E2=V—2<1—ﬁ>2+ﬁ. 3)
4 3 A

At finite bias, the spectrum has a gap which reaches
minimum |V/| on the circle cp = V /2. However, as long
as V <t,, the p? correction in the first term can be
neglected, simplifying the spectrum to E? = V?/4 +
¢*p*/f3 . The corresponding term can be also neglected
in the diagonal part of H. As a result, in the Hamiltonian
(2), the V terms and the momentum terms are decoupled.
Thus, the transition to the position-dependent potential
V(x) corresponds to reinstating the momenta p, and p,
as differential operators, finally leading to a dimensionless
quasiclassical Hamiltonian [15],

3_[(]0 = _QD()C)O'Z - (pi - p%)a-x - 2pxpya-y
=g(p.x) o, )

where we defined ¢(x) = V(x)t; a*/(2¢?), and momenta
are measured in units of inverse lattice constant a.

For constant ¢(x) the spectrum has the form E =

+/A? + €(p)?, which is similar to the spectra of con-
densed matter systems with off-diagonal long range order;
the gate voltage ¢ plays the role of the order parameter A.
It is well known that in such systems with a nontrivial
topological structure of A(r), low-energy fermionic modes
can emerge. Motivated by this analogy, we study related
inhomogeneous configurations of ¢(x).
From Egq. (4), the corresponding wave equation is

—e@u + (3, + py)’v = eu, )

(v + (0, = py)’u = ev. (6)

It possesses a number of symmetries for a general anti-
symmetric potential profile, ¢(—x) = —¢(x). It is easy to
see that in this case for v(x) = *u(—x) the two equations
(5) and (6) reduce to one. Therefore one can solve two
problems separately, for ¥ = [u(x), u(—x)] and & =
[w(x), —w(—x)]. Furthermore, after we find the eigenval-
ues and eigenvectors of the first problem for some value of
py, ¥V = [uZy(x), uf, (—x)] and & , the other solution
can be obtained as ®} = [—u” py(—x), u” , (x)] with ei-
genvalues (—&”, ). Thus in the p,-& plane the dispersion
of @ is obtained from the dispersion of W by inversion
relative to the point (0, 0). A related, useful symmetry has

to do with the behavior of the spectrum of Egs. (5) and (6)
under p, — —p,. It is easy to see that under this trans-
formation (u, v) — (v, —u) and € — —e.

Unlike the 1D Dirac equation, which typically describes
the domain-wall zero modes [5], Egs. (5) and (6) are not
easily solvable analytically for a general profile ¢(x). We
therefore first analytically study the simple case of step-
like potential ¢(x) = @ysgn(x) and then perform the nu-
merical solution of Egs. (5) and (6) for a smooth ¢(x). As
we will see, only the details of the zero mode dispersion
&(p,) depend on the exact profile of ¢(x). This is a mani-
festation of the topological nature of these states.

Step kink.—We first consider a step-like kink, ¢(x) =
@osgn(x). In this case, both for positive and negative x the
potential is constant, and the solution of the wave equation
in these regions is ¥ « ¢~**. For the intragap states, i.e.,
those with |e] < ¢,

A=*a*iB, (7

where a(B) = 2’1/2[(;7;‘. + @3 —&)/2 + (—)pg]‘/z. For
x < 0 one should keep only A7, = —a * i and for x >0
only A7, = a * i3, with the corresponding wave func-
tions of the form

u=(x) = uy exp(—=A7x) + u5 exp(—ATx). (8)

At x = 0 the left and right solutions have to be matched.
From the structure of the wave equation it is clear that the
wave function and its first derivative are continuous across
x = 0, while the second and higher derivatives are not.
Considering for concreteness the states of the form ¥ =
[u(x), u(—x)], the matching conditions are

u =u", 9)
ou” = d.u~, (10)
02u” = 02u~ — 2pu, (11)

B3u” = oju= +2p,(33u” — 92u~) + 2¢g0,u.  (12)

The third equation is obtained by subtracting Eq. (5) at x =
—0 from itself at x = +0 and using v(0) = u(0). The
fourth equation is obtained in the same manner but after
first differentiating Eq. (5) over x and using that 0,v(0) =
—d,u(0). Substituting now the general solutions of
Egs. (8), we obtain a homogeneous system of 4 equations
with 4 unknowns which only has a nontrivial solution if its
determinant equals zero. Given the form of A, Eq. (7), this
condition is equivalent to

4a*(a* + B?) + 4p,poa — 50(2) =0. (13)

Near zero energy, this equation has a solution only for
py < 0. For ¢ > 0, we obtain the dispersion

py = —(e + 0o/V2)/(e + @ov/2)"/? (14)

(we analyzed the wave equation near € = 0 to remove a

036804-2



PRL 100, 036804 (2008)

PHYSICAL REVIEW LETTERS

week ending
25 JANUARY 2008

spurious branch with ¢ — —¢g). The zero-energy solution
is obtained at py = —,/g,/2%*. The other branch corre-
sponding to wave function ® = [—u_ p (=X, Uy (x)]
has, as discussed above, the inverted dispersion,

py = (—& + ¢o/V2)/(—e + V2)V2  (15)

Notice that both solutions have negative velocity near ¢ =
0. This seems to imply time-reversal symmetry breaking.
However, for the second graphene valley, the velocity is
positive and thus the symmetry is reinstated. Therefore, the
zero modes are chiral; i.e., if we define pseudospin-1/2,
with S, corresponding to the valley index, all zero modes
have a definite sign of p,S,. It is also easy to see that on the
antikink (¢o <0) the dispersion is flipped, &(p,) —
€ (P y)'

Note that the decay length of the wave function of the
topologically confined states is of the order of a/./@, =
at/\/Vi; > a at low energies. Therefore, our solution is
consistent with the long-wavelength expansion (4) used for
the description of the system. For kinks wider than a/. /¢,
one expects quantitative deviations, which we indeed find
in the direct numerical solution.

Numerical solution.—The wave equations (5) and (6)
can be solved for an arbitrary potential profile ¢(x) nu-
merically using the finite differences method. In Fig. 2 we
show an example of an electronic state localized at the kink
of the potential ¢ = tanh(x/¢) for € =1 and p, =
—1/23/*. For the step-like potential this value of p, would
correspond to a zero-energy state. For the rather smooth
potential used here, the lowest energy is finite, € = 0.1140,
but indeed much smaller than the reference gap, ¢, = 1.
The state has the expected symmetry, v(x) = u(—x). The
wave function has a slightly oscillatory and decaying
behavior, consistent with the complex (nonreal) values of

position, x

FIG. 2. Spatial structure of the confined state obtained numeri-
cally from Egs. (5) and (6) for particular value p, = — 1/23/4,
The energy of the state is € = 0.1140. Shown are the compo-
nents # and v of the wave function (thin and dashed lines,
respectively), the probability density |¥|> = u? + v? (thick
line), and the potential profile, taken here as ¢(x) = tanh(x).
Note the symmetry, u(x) = v(—x).

A’s. A symmetry-related low-energy state & = (—v, u)
occurs at p, = +1/2%4,

In Figs. 3(a)—3(c) we show the intragap state dispersions
&(p,) for kinks of various widths. Note that for the narrow
kink [panels (a) and (b)] there are only two intragap states,
while for the wide kink [panel (c)] more low-energy states
appear below the gap edge. In all cases, there are only two
(chiral) zero modes per kink per valley per spin regardless
of the width. As expected, the analytical result, Eqs. (14)
and (15), fits very well for the narrow kink. For compari-
son, panel (d) shows the dispersion relation for states in a
1D channel defined by “conventional” confinement. In
this case no chiral zero modes are present, even though
there are states below the gap edge.

Charge of the kink. —It is well known that solitons in 1D
systems can carry charge, which can be either rational or
irrational [7,16—19]. Similarly, in our case, one might
expect that the kink can carry charge. Let us demonstrate
that contrary to this expectation the domain-wall charge
density is zero. Using the symmetries of the problem, the
density in the presence of a kink is proportional to

5 fimw;y(x)m(s;y -3 [o dp, |3 ()P,

Due to the completeness of the eigenfunctions, this ex-
pression is an x-independent constant proportional to the
momentum (energy) cutoff.

Topological considerations.— Above we found that in
the presence of a kink there are two zero modes per
graphene valley per spin. We now demonstrate how the
appearance of these modes can be understood from topo-
logical considerations [20]. The number of zero modes, or
more precisely the number of zero-energy left movers
minus the number of zero-energy right movers is related
to the topological charge N; of the Fermi point located
in the extended quasiclassical 3D momentum-real space
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FIG. 3. Energy level structure in the presence of nonuniform
interlayer bias ¢(x). The low-energy states in (a) and (c) are
localized on the single kink of profile ¢(x) = tanh(x/€) with
€ = 0.5 and € = 4, respectively. For (a) and (c) we used open
boundary conditions, W(%20) = 0, which caused flat bands at
& = *1. The dashed lines are the analytical expressions for the
intragap state dispersion, Eq. (14). (b) Same as (a) but with kink
and antikink at x = =10 and periodic boundary conditions.
(d) Nontopological confinement for potential profile ¢(x) =
tanh?(x/4). Note the absence of chiral zero modes.
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(p, x). In terms of the quasiclassical Green function, G, =

(lPO - }[qc)ila
1 _ _ _
N3 = Tﬂleijkltrv/‘ dSZ Gqcaquc‘l gqcaqucl Gqcak Gqcl’
T3

where integration is to be performed over an arbitrary 3D
surface o5 enclosing the Fermi point (py, p, x) = (0, 0, 0).
The charge Nj is the degree of the mapping of o3 onto a
manifold corresponding to the G,.. Given the form of
H qc» this manifold is equivalent to a 3D sphere, and
thus the mapping belongs to the nontrivial 775(S?) homo-
topy group. In evaluating N3, two choices of o5 are par-
ticularly useful: (a) infinite planes p, = * pg and
(b) infinite planes at x = *=x° (assuming that the planes
are sufficiently close, the flux contributing to N5 but not
crossing these planes is negligible). Representation (a) is
equivalent to the quasiclassical expansion of the difference
of spectral asymmetry functions, » = »(p9) — v(—p)),
where

de _ 1 n
v(py) = tr[ﬁ Gi,G ' = _§;Sgn8p>"

v counts the number of dispersion branches that cross zero
energy from above on the interval [—p9 p9]. In
representation (b), N5 is nothing but the difference of the
vacuum topological charges of the insulating states to the
right and to the left of the domain wall, N;(x°) — N5(—x°).
Given the form of H ., Eq. (4),

, 1 1
Ns(xo) = — fdpxdpy@g [0,8%9, 8l

from which one easily finds N;(x,) = sgn[¢(x°)]. Thus,
for @(+00) >0, we obtain N3 = N;(xy) — N3(—x,) =
v = 2, consistent with our earlier finding that there are
two branches per kink per valley per spin that cross zero
energy with negative velocity.

Having established the presence of one-dimensional
chiral zero modes originating from topological confine-
ment, we briefly discuss their relevance to one area of
current interest, namely, “‘valleytronics,” which attempts
to utilize the valley degree of freedom to achieve new
electronic functionality [12]. As we have shown above
[e.g., see Figs. 3(a) and 3(c)], a topologically confined
1D channel contains zero modes, with the direction of
propagation determined by the valley. Thus, a valley filter
is realized when a voltage difference is applied along the
kink—only electrons in one of the valleys will carry the
current and the other valley is “filtered out.”” It should be
possible to realize a valley valve by ‘“‘connecting” two
filters in series. When the polarity of two filters is the
same, the current can pass through; for opposite polarities
the current is blocked. We note that earlier proposals
[12,21] for valley filters and valves in graphene mono-
layers relied on perfect zigzag edges, making their prac-
tical realization very challenging. On the other hand, the
technology needed for valley filter and valve using the

topologically confined channels is much less demanding:
A smooth 1D channel can easily be realized away from the
edges of the graphene sample, thus decreasing substan-
tially the possibility of intervalley scattering. Some of the
technology —the opening of a gap in a bilayer using gate
electrodes—has already been demonstrated experimen-
tally [22]. A more detailed discussion of valley filtering
induced by topological confinement will be presented else-
where [23].
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