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We present a simple analytical nonlinear theory for quantum diodes in a dense Fermi magnetoplasma.
By using the steady-state quantum hydrodynamical equations for a dense Fermi magnetoplasma, we
derive coupled nonlinear Schödinger and Poisson equations. The latter are numerically solved to show the
effects of the quantum statistical pressure, the quantum tunneling (or the quantum diffraction), and the
external magnetic field strength on the potential and electron density profiles in a quantum diode at
nanometer scales. It is found that the quantum statistical pressure introduces a lower bound on the steady
electron flow in the quantum diode, while the quantum diffraction effect allows the electron tunneling at
low flow speeds. The magnetic field acts as a barrier, and larger potentials are needed to drive currents
through the quantum diode.
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Studies of charged particle dynamics in a plasma-filled
gap are of significant interest in vacuum microelectronics,
cross-field devices, and high power diodes. The fa-
miliar one-dimensional Child-Langmuir (CL) law [1,2]
gives the maximum steady-state current, JCL � �1=9���

�2e=me�
1=2�3=2

0 =d2, which can be transported across a
cathode-anode gap of spacing d and the cathode-anode
potential difference �0, where e is the magnitude of the
electron charge and me is the electron mass. Although the
limited CL current in a gap remains a fundamental quan-
tity, there are obvious modifications of the CL law due to
geometrical [3] and relativistic effects [4]. Furthermore, in
the emerging fields of nanotechnology or nanoelectronics,
tunneling microscopy and vacuum microelectronics, nano-
triodes and nanogaps, and nanojunctions, one encounters
interesting phenomena at scales ranging from sub-10 nm to
hundreds of nm. On such microscopic scales, quantum
effects (e.g., the electron tunneling) cannot be neglected.
Quantum extension of the CL law has been presented by
Lau et al. [5], by using a simple mean-field model that is
based on the coupled Schrödinger and Poisson equations.
The authors of Ref. [5] reported that the limiting current in
a quantum diode may far exceed the classical CL value due
to the electron tunneling effect. Further theoretical models
for space-charge limited flows in an unmagnetized ultra-
cold quantum plasma have been developed by Ang et al.
[6–8] and Ang and Zhang [9].

In this Letter, we present for the first time a simple
nonlinear theory for a quantum diode in a dense Fermi
magnetoplasma, accounting for the quantum statistical
electron pressure and quantum electron tunneling effects,
as well as by invoking the appropriate boundary conditions
for a quantum plasma diode. We consider the planar diode
configuration, where an insulating homogeneous magnetic
field ẑB0, where ẑ is the unit vector along the z axis in a
Cartesian coordinate system and B0 is the magnetic field
strength, is applied parallel to the cathode (located at x �
0) and anode (located at x � d) surfaces. We assume that

the characteristic rise time of the anode voltage to the
steady value �0�x � d� � �0 is long in comparison with
the electron gyroperiod. The electrons are emitted from the
cathode with a finite speed, and are accelerated (by the
electric field � �@�=@x) towards the anode where the
Voltage applied is �0. The electron dynamics in the steady
state is governed by the quantum hydrodynamic (QHD)
equations (in the mean-field approximation [10–12]),
which are composed of the electron continuity equation
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respectively, and the Poisson equation
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where n �  2 is the macroscopic electron density,  is the
modulus of the wave function of the electrons, vx and vy
are the x and y components of the continuum electron fluid
velocity, Ex � �@��x�=@x is the x component of the diode
electric field, ��x� is the scalar potential, kB is the
Boltzmann constant, kBTFe � �@

2=2me��3�2�2=3n2=3
0 is

the Fermi electron temperature, @ is the Planck constant
divided by 2�, n0 �  2

0 is electron density at the anode
(x � 0), and c is the speed of light in vacuum.
Furthermore, the quantum force is
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where the first term on the right-hand side is derived
from the quantum statistical pressure law [11,12] pe �
�2meV2

Fe=3n2
0�n

3, where VFe � �kBTFe=me�
1=2 is the

Fermi electron thermal speed, and the second term is the
quantum Bohm potential [10–12].

We note that Eqs. (1) and (3) are satisfied by, respec-
tively,

 nvx � �J=e � const; (6)

and

 vy � !cex; (7)

where J < 0 is the constant current and !ce � eB0=mec is
the electron gyrofrequency. It should be noted that in the
derivation of the CL law, the electrons are assumed to be
emitted from the cathode with zero speed, which leads to a
divergence of the electron density, while in reality the
electrons are emitted from the cathode with a nonzero
speed v0x, and the electron density at the cathode is n0 �
 2

0.
Inserting vx and vy from (6) and (7) into (2), we obtain

an equation, which can be integrated once to obtain
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while (4) takes the form
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In deriving Eq. (8), we have imposed the boundary con-
ditions @2 =@x2 � 0,  �  0, and � � 0 at the cathode,
which is located at x � 0. In what follows, we will also
assume that E � �@�=@x � 0 and @ =@x � 0 at x � 0.
We note that Eqs. (8) and (9) are solved exactly for  �
 0, e�=me � !2

cex
2=2, and !2

ce � !2
pe for any value of J.

The Brillouin flow condition!2
ce � !2

pe also appears in the
theory of magnetically isolated diodes (where J � 0) [4].

We note that by introducing the change of variable
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x2; (10)

the system of Eqs. (8) and (9) can be transformed to
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and
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respectively.

For the numerical treatment, it is convenient to rewrite
the system (8) and (9) in a dimensionless form as
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respectively. Here, � �  = 0, � � e�=meV2
Fe, X �

!pex=VFe, and !pe � �4� 2
0e

2=me�
1=2 is the electron

plasma frequency. We have denoted the dimensionless
current ~J � J=e 2

0VFe, the quantum parameter H �
@!pe=kBTFe, and the normalized Fermi thermal speed
~VFe. In our numerical simulation below, ~VFe is set to zero
(one) to exclude (include) the quantum pressure effect, and
~J, H, and !ce=!pe are set to different values to investigate
the effects of flow speeds, quantum diffraction, and the
magnetic field on the diode properties. To neglect the
quantum diffraction effect, we set H � 0, and for the
unmagnetized case, we set !ce=!pe � 0. The system of
Eqs. (13) and (14) are then integrated with a fourth-order
Runge-Kutta method with the appropriate boundary con-
ditions at X � 0, and the integration ends at the anode at
X � d. For the case H � 0, Eq. (13) is solved analytically
for � and inserted into (14), which is integrated
numerically.

We first investigate Eqs. (8) and (9) for the classical and
unmagnetized case @ � VFe � 0 and !ce � 0. Here, we
have from Eq. (8)  2 �  2=

�����������������
1� ��
p

, where � �
2e3 4

0=J
2me, which can be inserted into Eq. (9) to obtain
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Multiplying the above equation by @�=@x and integrating
once, we obtain
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FIG. 1 (color online). The profiles of the electrostatic potential
(left panel) and the electron density (right panel) for an unmag-
netized classical diode (!ce � @ � VFe � 0) with J �
�ev0z 

2
0 . The dashed lines shows the exact solution, and the

solid line shows the Child-Langmuir law.
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where we used the boundary conditions � � @�=@x � 0

at x � 0. Introducing the new variable � ������������������������������������������������
1� ��
p

� 1
p

, the equation above can readily be inte-
grated once more to obtain [2]

 �3 � 3� �
3x
2

������������������
4�e 2

0�
q

; (17)

which relates� to x. In the limiting case ��� 1, we have

� � ����1=4, which, by using (12), yields ����3=4 �

�3x=2�
������������������
4�e 2

0�
q

, and we recover the classical Child-
Langmuir law [4]
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In Fig. 1, we have plotted the exact solution as well as the
Child-Langmuir law. For the Child-Langmuir law, the
density formally goes to infinity at x � 0, while with
appropriate boundary conditions, we have a finite density
at x � 0.

Next, we investigate the influence of the quantum sta-
tistical pressure on the unmagnetized diode. It turns out
that there exist a quantum Bohm criterion for the existence
of a well-defined steady-state stream of electrons charac-

terized by a decreasing density and positive potential.
Linearizing Eq. (8) as  �  0 �  1, j 1j 	  0 and � �
�1 with the Bohm potential term equal to zero, we find that
e�1=me � 4�V2

Fe � J
2=2e2 4

0� 1= 0. By requiring that
negative  1 should give rise to positive �1, we find the
condition J2 > 2e2 4

0V
2
Fe. By using the relation J �

�evx0 
2
0, where vx0 is the terminal speed at x � 0, we

find the ‘‘quantum Bohm criterion’’ vx0 >
���
2
p
VFe. In

Fig. 2, we have plotted the profiles and electron densities
for several values of vx0, including the limiting case vx0 ����

2
p
VFe. Larger values of vx0 are correlated with larger

potentials and higher electron densities. Hence, in our
quantum fluid picture, there exist a minimum critical po-
tential �c, as a function of VFe and d, for the development
of a steady-state electron flow. If the electron diffraction
effect is included, the current is allowed to take values
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FIG. 2 (color online). The profiles of the electrostatic potential
(left panel) and the electron density (right panel) for an unmag-
netized diode (!ce � 0), where we have neglected the quantum
diffraction effect (@ � 0). The currents are J � �evx0 

2
0, with

terminal speeds vx0 � 4VFe (solid lines), vx0 � 2VFe (dashed
lines), and vx0 �

���
2
p
VFe (dotted lines). The latter case corre-

sponds to the lower speed limit for a well-defined quantum
diode.
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FIG. 3 (color online). The profiles of the electrostatic potential
(left panels) and the electron density (right panels) for an
unmagnetized diode for the case where we have neglected the
quantum statistical pressure effect (dotted lines) and for the case
where it has been included (solid lines). We use to H � 2 and
J � �1:0� e 2

0VFe (i.e., vx0 � VFe); even though the Bohm
criterion is violated, electrons can tunnel through the diode due
to the quantum tunneling effect.
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FIG. 4 (color online). The profiles of the electrostatic potential
(left panel) and the electron density (right panel) for a magne-
tized diode where we have neglected the quantum diffraction
effect (@ � 0). We used J � �4e 0VFe and !ce � 0 (dotted
lines), !ce � 0:9!pe (dash-dotted lines), !ce � !pe (dashed
lines), and!ce � 1:1!pe (solid lines). The diode has a maximum
critical width for !ce=!pe > 1.
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FIG. 5 (color online). The profiles of the electrostatic potential
(left panels) and the electron density (right panels) for an
unmagnetized diode, for the case where we have neglected the
quantum statistical pressure effect (dotted lines) and for the case
where it has been included (solid lines). The quantum parameter
is H � 2, H � 1, and H � 0:5 (top to bottom panels). We use
J � �2:0e 2

0VFe (i.e., vx0 � 2VFe), so that the Bohm criterion is
fulfilled.
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below the quantum Bohm limit. This is illustrated in Fig. 3,
where we have used the flow speed vx0 � VFe. We see in
Fig. 3 that the electron density shows an oscillatory behav-
ior due to the quantum diffraction effect.

The influence of the magnetic field on the diode is
illustrated in Fig. 4, where we have plotted the potential
and the electron density for different values of !ce=!pe.
For !ce=!pe � 0, we have the unmagnetized case with a
monotonically increasing potential driving a monotoni-
cally decreasing electron density. Larger values of
!ce=!pe give larger potentials and higher electron den-
sities. For !ce=!pe � 1, we have the limiting case of the
Brillouin flow with constant density. For !ce=!pe > 1, the
electron density is increasing for a positive potential, and
the steady-state solution has a critical maximum width; in
our case, for !ce=!pe � 1:1, the critical width is x �
7VFe=!pe. For larger x-values than shown in Fig. 4, we
have seen that for finite !ce=!pe < 1, the electron density
becomes nonmonotonic, and exhibits a periodic behavior
(similarly as shown in Fig. 6 below).

In Fig. 5, we have investigated the effects of the quantum
statistical pressure and quantum tunneling on an unmag-
netized diode, for a larger current and larger potential than
those in Fig. 3. The impact of the quantum statistical

pressure on the potential and the electron density is only
minor, while larger values of H lead to visible oscillations
in the electron density. For the magnetized case, shown in
Fig. 6, the potential is somewhat higher (e.g., at x �
10VFe=!pe), and the electron densities are significantly
higher for the same current as in Fig. 5. We see in Fig. 6
that the electron density is nonmonotonic and exhibits a
maximum at x � 15VFe=!pe, and for larger values of x
(not shown here), the electron density has a quasiperiodic
behavior.

To summarize, we have developed a nonlinear model for
a quantum diode in a dense Fermi magnetoplasma, taking
into account the quantum statistical pressure law for the
electrons, and the quantum Bohm potential that causes the
electron tunneling. In the absence of the latter, the quantum
statistical pressure law leads to a lower speed limit at x �
0, similar to the Bohm criterion for the plasma sheath [13],
below which the steady-state electron flow ceases to exist.
However, the quantum tunneling effect may lower this
speed limit. Furthermore, the external magnetic field acts
as a barrier on the electron flow, so that a larger potential is
needed to drive the current in magnetized quantum diodes
at nanometer scales.
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FIG. 6 (color online). The profiles of the electrostatic potential
(left panels) and the electron density (right panels) for a magne-
tized quantum diode with !ce=!pe � 0:9, for the case where we
have neglected the quantum statistical pressure (dotted lines) and
for the case where it has been included (solid lines). The
quantum parameter is H � 2, H � 1, and H � 0:5 (top to
bottom panels). We use J � �2:0� e 2

0VFe (i.e., vx0 � VFe),
so that the Bohm criterion is fulfilled for the case where the
quantum pressure is included. We see that the electron density
profile exhibits a second maximum at x � 15VFe=!pe, and for
larger values of x (not shown here), similar maxima appear in a
quasiperiodic manner.
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