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Transport Properties of Saturated and Unsaturated Porous Fractal Materials
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Inviscid, irrotational flow through fractal porous materials is studied. The key parameter is the variation
of tortuosity with the filling fraction ¢ of fluid in the porous material. Altering the filling fraction provides
a way of probing the effect of the fractal structure over all its length scales. The variation of tortuosity with
¢ is found to follow a power law of the form a ~ ¢~ € for deterministic and stochastic fractals in two and
three dimensions. A phenomenological argument for the scaling of tortuosity a with filling fraction ¢ is
presented and is given by a ~ ¢Pv~2/Pr=d: where Dy is the fractal dimension, D,, is the random walk
dimension, and df, is the Euclidean dimension. Numerically calculated values of the exponents show good
agreement with those predicted from the phenomenological argument for both the saturated and the

unsaturated model.
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Porous materials such as aerogels [1], sedimentary rocks
[2], and fracture systems [3] are now widely accepted to
exhibit fractal characteristics. The multiscale geometry of
these materials has been found to have a significant effect
on their transport properties. For example, the permeability
of a fracture is substantially increased if the fracture inter-
face has fractal characteristics [4]. The characterization of
porous materials and their transport properties, such as
permeability and thermal conductivity, has historically
been limited to the measurement of macroscopic parame-
ters, which tells one little about the mesoscopic structure of
these materials. There has been much progress [5,6] in
using microtomography images to generate 3D networks
from which flow properties can be predicted. However it is
not always easy to draw a relationship between observable
transport properties and simple geometrical quantities.
Furthermore, despite the advances mentioned, predictions
of these properties is still largely based on empirical rela-
tionships based on observable characteristics of the geome-
try, such as porosity [7].

A common parameter used to describe this mesoscopic
structure is the tortuosity «, which represents the tortuous
or twisted nature that a fluid would have to take to pass
through the porous material. Here, tortuosity is taken as a
dimensionless quantity which quantifies the added mass
effect caused by fluid flowing around an obstruction [8],

a = Z—j , where p* is the effective density and p  is the bulk

fluid density. Reference [9] described an experimental
method of determining the tortuosity of 91% porous aero-
gel using a superfluid “He film of varying thickness. Thin
films follow all the irregularities of the substrate, while
thick films ‘“defractalize’” the substrate and only large
scale features remain important. It was proposed that the
scaling of tortuosity with the volume filling fraction ¢ of
liquid helium could act as an independent fractal character-
istic of the material. The exponent of this scaling —e was
found to be to be approximately —1.0 for the aerogel
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sample used in the experiment. This can be treated as the
scaling of a dynamical property in a fractal environment.

This Letter aims to determine, both phenomenologically
and numerically, the relationship between tortuosity and
volume filling fraction in a wide class of saturated and
unsaturated fractals, including a model for the aerogel used
in this experiment.

There are several theories in the literature for the depen-
dence of the tortuosity of random or fractal networks with
increasing volume filling fraction of fluid, e.g., [10-12].
All of the theories share the feature that the scaling ex-
ponent is solely a function of the box-counting dimension
D 5 of the material, which describes how the mass M of a
fractal scales with the length scale L being examined, M ~
Lé%n(L) ~ LPr, where n(L) is the density of the fractal and
dg the Euclidean dimension of the embedding space. Yet, it
has long been known that the description of dynamic
properties, such as diffusion on fractals, also requires the
random walk dimension D,, [13]. The key result is that
diffusion on a fractal is range dependent, so that the
diffusion coefficient D(L) ~ L2 Pw.

To obtain a scaling relationship for tortuosity, it must be
related to diffusion. The equivalence between the hydro-
dynamical problem of an inviscid, incompressible fluid
flowing in a pore space and that of the electrical conduc-
tivity o of a nonconducting, rigid porous material, con-
taining a conducting pore fluid of conductivity o, allows
the tortuosity to be expressed as [8,14]

Lo, (1)

o

g
o =

The final step needed is a relationship between conductiv-
ity and diffusion, which is provided by the famous Einstein
equation [15] D = kgT#6, where kg is Boltzmann’s con-
stant, T is the temperature and 6 is mobility. Ohm’s Law
gives o = gn#, where n is the concentration of current
carrying particles and ¢ their charge. This has been shown
to hold in the case of inhomogeneous networks [16]. Thus,
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the diffusion coefficient is given by

kgTo(L) _ o(L)
gn(L)  n(L)

D(L) = 2
Assuming that the adsorbed film is relatively thin and using
the scalings observed for fractals for D(L) and n(L), it is
easy to show that (L) ~ LPr~Pw*27dz_Noting that ¢ ~
LPr~4e [10] and substituting this expression in Eq. (1), the
following scaling between tortuosity and filling fraction is
obtained,

o ~ ¢Dw72/fodE‘ (3)

This implies that the scaling of tortuosity with filling
fraction is determined by the box-counting and random
walk dimensions of the fluid. Of course, for small filling
fractions, these fractal dimensions are closely related to the
fractal dimensions of the adsorbant, with the further as-
sumption that there are no correlations between layers on
different surfaces. Thus, knowledge of this scaling enables
one to determine the fractal characteristics of the
adsorbant.

Two approaches are taken to model the problem at hand.
The first is to consider a saturated pore space with a fractal
mass distribution given by a deterministic fractal, where in
this case the families of 2D Sierpinski carpets and 3D
Menger sponges (see [17]) were considered. The defrac-
talization is achieved by considering different generations
of the fractal, rather than by increasing the filling fraction
of fluid in the unsaturated pore, as in [9]. As the number of
iterations is decreased, more of the small scale features of
the fractal are lost and it can be imagined that this resem-
bles the smoothing out of small scale features by a thicker
adsorbed film. There is no attempt to model the dynamics
of the filling and draining process in this approach, rather it
is intended to reflect the defractalization of the fractal
object by increased filling fraction. The incompressibility
and irrotationality associated with superfluid *He (see [9])
lead to a boundary value problem in the field of potential
flow, with the scalar velocity potential (. The velocity field
v is given by Vi = v.

The porous medium occupies the space 0 <x <L,
where L is large compared to the size of the pores, and
has a total lateral area A. A potential difference ¢ is
applied across the porous medium and zero-flux boundary
conditions are enforced on all other boundaries. The filling
fraction ¢ is defined by considering the function y(r)
which is O when r is occupied by the porous material and
1 when it is occupied by fluid. Clearly, ¢ = 7 [ y(r)d°r.
The tortuosity given in [8] can be extended to the case of
unsaturated media by taking the ratio of the kinetic energy
of the tortuous flow to the kinetic energy of a flow with no
obstruction to give

o= PA(YL)
L [yr)(Vy)*dr’

or its equivalent 2D definition. The potential equations are

“)

solved using a simple linear finite element scheme [18].
Figure 1 shows typical results for the variation of tortuosity
a with filling fraction ¢, in this case for flow around a 2D
Sierpinski gasket with D, = 1.87 and D,, = 2.13, where
the fluid flow takes place in the fractal part of the gasket.
Clearly, the results follow a power law of the form a ~
¢ ¢, as predicted by Eq. (3). The exponent of this power
law is effectively a measure of how important the smaller
scales are in the fractal structure; the steeper the curve, the
greater resistance the small scales provide.

Similar results were obtained for 15 2D Sierpinski car-
pets and ten 3D Menger sponges. For each different fractal
the values of D and D,, for the fluid were found using the
box-counting [19] and exact enumeration techniques [20],
respectively. The predicted value of the exponent was
calculated using Eq. (3) and is compared with the numeri-
cally obtained exponent in Fig. 2.

It is clear that the scaling of tortuosity with filling
fraction cannot simply be a function of the box-counting
dimension, as previously predicted. For example, the the-
ory of [10] only gives a range of predicted € from 0.71 to
0.77. The results show there are fractals with the same
value of Dy which have considerably different scaling
exponents. The predicted values of € show the right trend
when compared to the numerically calculated values of the
exponent, although, on the whole, the predicted values
overestimate the observed values. We currently have no
explanation for this overestimation. The largest discrepan-
cies between the predicted and numerical exponents
clearly occur for the 2D case. This can be explained by
the ease with which the flow can be blocked in two dimen-
sions, when compared to three dimensions. If the direction
of flow is largely obstructed by a part of the porous
material, this effect is not taken into account by measuring
D,,, which is isotropic. Supporting this idea is the fact that
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FIG. 1. Variation of tortuosity with filling fraction for a satu-
rated 2D Sierpinski carpet with Dy = 1.87 and D,, = 2.13. The
inset in the bottom left hand corner shows generations 1 and 3 of
a Sierpinski gasket.
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FIG. 2. Comparison of the numerically observed and predicted
exponents for 15 2D Sierpinski carpets (X) and ten 3D Menger
sponges (O). The straight line predicted € = Numerical € guides
the eye. The inset shows generation 4 of the 2D fractal having
the largest discrepancy between predicted and numerical expo-
nents.

the area of the bounding box which contains the largest
connected cluster of the fractal, which is a measure of the
blockage, shows a strong correlation with the magnitude of
the discrepancy between the numerical and predicted ex-
ponents. The inset of Fig. 2 shows generation 4 of the 2D
Sierpinski carpet which exhibited the largest discrepancy
between the predicted and numerical exponents. Black
shading indicates the “pores” of the material. The largest
connected cluster, shaded in white (the remaining material
is shaded gray), clearly blocks the direction of flow, which
is left to right.

The agreement for the 3D Menger sponges is certainly
better than for the 2D Sierpinski carpets as it is much
harder in three dimensions to generate such a blockage.
The only 3D fractal showing a large discrepancy between
the predicted and numerical exponents has a porosity P =
0.52 at generation number 4, whereas all the other fractals
have P > 0.7 at the same generation number.

The above model provides no way of analyzing stochas-
tic fractals [17], where there is no equivalent of a generator
or motif, which is iterated a certain number of times to give
the desired level of detail. An alternative way of defractal-
izing is to adsorb an increasing amount of fluid onto a
fractal substrate and to calculate the tortuosity of these
films.

Reference [21] describes a method for calculating the
adsorption of a fluid onto any lattice based object by means
of writing the Hamiltonian of a simple lattice-gas model in
the presence of geometrical disorder. Only the energies due
to fluid-fluid interaction and solid-fluid interaction, of
strengths wg and wy;, respectively, between nearest neigh-
bors on the lattice are considered. The Hamiltonian is H =

—wi I8 T M — wee > e [l — ) + 7m0 —

7,)], where the sums run over nearest neighbor sites. 7; is a
fluid occupation variable, which indicates whether site i of
the lattice is occupied by fluid (7; = 1) or not (7; = 0). 5,
is a quenched variable that characterizes the presence of
solid particles at site i (; = 0 if solid is present and 7; =
1 if not). This method was chosen as it allows the geomet-
rical disorder (pore size and pore connectivity) crucial to
this problem to be considered from the outset, as opposed
to assuming a pore shape and then using a curve fitting
procedure to determine the connectivity of the network.
The m; sets are generated from both diffusion-limited
aggregation (DLA) clusters [22] and deterministic fractals
in two and three dimensions. The Hamiltonian is treated in
the mean-field limit and this leads to a set of coupled
nonlinear equations for the fluid density, p; = (7;7,), at
the lattice sites, where () denotes an average occupancy.
Lattice sites i with p; > 0.5 are taken to contain fluid,
whereas sites i with p; < 0.5 are taken as vacant. An
example of the adsorption process for a DLA cluster can
be seen in fig. 4 of [23]. The calculation of the tortuosity
consists of the solution of the potential flow problem
described in the saturated case, using the linear finite
element scheme. The geometry is defined by the presence
of fluid sites from the lattice-gas model.

Figure 3 shows the results for both 2D and 3D determi-
nistic and DLA fractals and it is clear that all of the data are
fitted by a power law of the form a ~ ¢ €.

The exponent for the 3D DLA cluster (e = 1.04) is very
close to the experimentally measured exponent of € =
1.16 reported for aerogel in [9], which is encouraging as
DLA clusters have been proposed as a potential structure
for aerogel. One would expect any fractal characteristics of
the fluid flow to be lost at higher filling fractions, when the
fractal nature of the adsorbed fluid is lost. It is, however,
difficult to be conclusive about how far the power law
extends to high filling fractions from the numerical data
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FIG. 3. The numerically calculated tortuosity against filling
fraction in the unsaturated model on log-log scale, along with
the fitted power laws. (X-) 2D Sierpinski carpet, (O---) 2D
DLA cluster, (A.-) 3D DLA cluster, (+-) 3D DLA cluster.
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FIG. 4. Comparison of the numerically observed and predicted
exponents for the unsaturated model. (X) 2D deterministic
fractals, (O) 2D DLA clusters, (.) 3D deterministic fractals,
(A) 3D DLA clusters. The straight line predicted e =
Numerical € again guides the eye.

obtained, due to the intrinsic numerical difficulty of ob-
taining sufficient data at high filling fractions.

Figure 4 shows the values of Dy and D,, calculated for
the adsorbed fluid and the numerical scaling exponent
compared with the scaling exponent predicted by Eq. (3).

The agreement between the predicted and numerical
exponents is generally good, especially for the DLA clus-
ters, where the prediction is even sensitive to small changes
in the numerical exponent of different DLA clusters. This
suggests that the method is capable of determining the
different microstructure of different realisations of the
same family of stochastic fractals. The agreement of the
numerical and predicted exponents for the deterministic
fractals is less impressive, although still good, with the
exception of one 3D Menger sponge. Because of the lim-
ited number of deterministic fractals considered, it is diffi-
cult to say whether the predictions are more accurate for
the 2D or 3D cases, but it appears that the agreement in
three dimensions is better, as in the saturated case. This
observation, in tandem with the better agreement for the
stochastic fractals, suggests that the predicted exponent is
more accurate for highly porous materials. Again the pre-
dicted exponent seems to be an overestimate and this
requires further investigation.

In conclusion, tortuosity, an important mesoscopic prop-
erty in the calculation of the transport properties of porous
materials, has been shown to scale with the volume filling
fraction of fluid in the material with an exponent that is
predominantly a function of the box-counting and random
walk dimensions of the fluid. This exponent is not only
sensitive to different classes of fractals, i.e., stochastic and
deterministic, but also distinguishes between the different
structure of stochastic fractals of the same type. The ex-
ponent € is an important characteristic as it measures the
impact of different length scales on the tortuosity of the

material and is a measure of the multiscale nature of
materials, which can be accessed experimentally. Further
work is needed to understand why the predicted exponent
is always an overestimate and what other fractal character-
istics may be needed to more accurately predict €.
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