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I show using Landau theory that quenched dislocations can facilitate the supersolid to normal solid
transition, making it possible for the transition to occur even if it does not in a dislocation-free crystal. I
make detailed predictions for the dependence of the supersolid to normal solid transition temperature
Tc�L�, superfluid density �S�T; L�, and specific heat C�T; L� on temperature T and dislocation spacing L,
all of which can be tested against experiments. The results should also be applicable to an enormous
variety of other systems, including, e.g., ferromagnets.
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Recent reports [1] of supersolidity—a crystal exhibit-
ing ‘‘off-diagonal long-range order’’ (ODLRO) [2,3]—
in solid 4He raise many questions. First, quantum
Monte Carlo simulations [4] find no supersolid (SS) phase.
Second, the temperature (T) dependence [1] of the super-
fluid density �S�T� in the supersolid differs from that in the
superfluid (SF), contradicting theory [5]. Third, no specific
heat anomaly is seen at the SS to normal solid (NS)
transition.

In this Letter, I propose a resolution of these puzzles.
Since, depending on the material, either local compression
or local dilation increase the local transition temperature
Tc�~r� [5], and since edge dislocations have regions of both
types near their cores [6], these defects induce, in all
materials, regions of elevated Tc, as first noted for super-
conductors [7]. ODLRO therefore happens at higher tem-
peratures on the tangled network of quenched dislocations
in 4He crystals than in the bulk, as in superconductors
[7,8], and can occur even if the clean (dislocationless)
lattice remains normal down to T � 0.

Specifically, the DGT [5] model with quenched dis-
locations implies the following scenario: as tempera-
ture T decreases below what I will call the ‘‘conden-
sation’’ temperature Tcond, which is always >Tclean

c , the
transition temperature of the clean (i.e., dislocation-
less) lattice, each dislocation line in a tangled network of
them nucleates a cylindrical supersolid ‘‘tube’’ tangent to
it. The radius of these tubes grows with decreasing
temperature.

We can think of places where dislocations cross, making
supersolid tubes overlap, as the ‘‘sites’’ of a random lattice.
The sections of tube between these sites act as ferromag-
netic ‘‘bonds.’’ The typical length of these bonds is L, the
mean dislocation spacing, which grows with annealing;
L! 1 for a clean crystal. This random lattice does not
develop macroscopic supersolidity (or undergo any phase
transition) at Tcond because the sites lack long-range phase
coherence near Tcond. However, as temperature is lowered
further, such coherence inevitably develops at T � Tc�L�,
with Tcond > Tc�L�> Tclean

c . Indeed, if condensation oc-
curs, long-range order always develops [i.e., Tc�L�> 0],

even if the clean system never orders. This ordering at
Tc�L� is the SS to NS transition.

This picture is very similar to Shevchenko’s [9].
Figure 1 plots the superfluid density �s�T�. When

Tclean
c > 0, near Tc�L�,

 �S�T; L� �
A
L�

�
1�

T
Tc�L�

�
�
; (1)

where � � 2=3 is the 3D XY correlation length exponent
[10], � � 2�1��2��� �

1
2 , A and T0 are independent of L, a is a

lattice constant, and

 Tc�L� � Tclean
c � T0

�
a
L

�
1=�2���

; Tclean
c > 0: (2)

FIG. 1. The superfluid density versus temperature for a dis-
located solid in which the clean system does (top curve) and does
not (bottom curve) have a transition. �s obeys Eqs. (1) and (4) in
regions (I) and (II), respectively, where (II) is defined by Eq. (3).
Tc�L� for the cases Tclean

c > and <0 are, respectively, denoted in
this figure by T>c �L� and T<c �L�, and given by Eqs. (2) and (6).
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When temperature T is lowered into the range

 �T�L� � T � Tclean
c � Tc�L� � T

clean
c ; (3)

where �T�L� / 1
L ,

 �S�T; L� � A0
�T � Tclean

c ���2

L2 / �T � Tclean
c ��4=3; (4)

and A0 an L-independent constant. In the L! 1 limit,
�T�L� / 1

L� Tc�L� � Tclean
c / L�1=�2��� � L�3=4, ensur-

ing a large window of validity for Eq. (4). Once T <
Tclean
c � �T�L�, the tubes overlap, the entire volume be-

comes supersolid, and �s is that of the clean system,
completely independent of L, and so obeys

 �S�T� / �Tclean
c � T�2=3: (5)

Note that the high temperature [T > Tclean
c � �T�L�]

behavior of �s�T; L� is strongly sample and annealing
dependent (because L dependent), but the low-temperature
[T < Tclean

c � �T�L�] behavior is sample and annealing
independent, and identical to that of a clean sample.

Precisely such behavior was recently reported [11]. In
Fig. 2, �s�T� data from Chan’s group [12] are plotted in the
form ��3=4

s versus T, which Eq. (4) predicts should give a
straight line section, for T satisfying Eq. (3). The data do
indeed show such a straight section, although it is fairly
short, and the error bars in this region are large. More
accurate measurements of �s�T�, and of the dislocation
spacing L (by, e.g., ultrasonic velocity and attenuation
measurements [13]), are clearly needed. Alternatively,
one could deduce the ratio of L’s in different samples by
comparing the coefficients of �Tclean

c � T��4=3 in Eq. (4),
and using this ratio to test the predicted L dependence of
�s�T; L� and Tc�L� Eqs. (1) and (2).

If the clean system does not order, which I will refer to as
Tclean
c < 0, Tc�L� vanishes as L! 1:

 Tc�L� � T0
a
L
; Tclean

c < 0; (6)

where T0 is another L-independent constant, a result first
obtained in Ref. [9], could also be tested by measurements
and/or deductions (as described above) of L. Equation (1)
still holds near Tc�L�, but now with � � 2. Equations. (4)
and (5) never apply, since T � 0 intervenes above Tclean

c .
The lower curve in Fig. 1 plots �s�T� in this case.

The experimental situation is currently unclear. The
Tclean
c < 0 scenario is supported by recent experiments

[14], showing nonclassical rotational inertia in unannealed
4He crystals, but none after annealing. On the other hand,
Chan’s recent experiments [11], as discussed above and in
Fig. 2, suggest Tclean

c > 0. In the experiments of Ref. [11],
single crystals still show supersolidity, suggesting that
dislocations, rather than grain boundaries, are the respon-
sible defects.

Also suggestive are simulations [15] which see super-
solid order near screw dislocations. Although screw dis-
locations do not, in the DGT model, couple to supersolid
order, higher order terms allow such coupling ([16]).

The absence of a specific heat anomaly in some ex-
periments can be explained in this picture. For the case
Tclean
c < 0, the specific heat near Tc�L� is given by

 C /
j TTc
� 1j��

L�4�3��=�2���
/
j TTc
� 1j��

L3=2
; Tclean

c < 0 (7)

where� � �0:0127 is the specific heat exponent of the 3D
XY model [10]. Clearly, the jT � Tcj�� singularity van-
ishes as dislocation density ! 0 (L! 1), and so should
be seen only in dirty samples, not clean ones.

The ideas developed here are applicable to, e.g., ferro-
magnets [17], which I will treat elsewhere [18].

I will now outline the derivation of these results. My
Hamiltonian is an isotropic [19] version of that of [5]:

 H �
Z
d3r

�
t� ~r�
2
j j2 �

u
4
j j4 �

c
2
j ~r j2

�
; (8)

with

 t�~r� � t0 � guii� ~r�: (9)

Here, t0�T� is a decreasing function of temperature T
satisfying t0�T

clean
c � � tclean

c < 0, where tclean
c is the value

of t0 at the transition in the clean system, u and c are
constants, and uii is the trace of the elastic strain tensor.

Thermal fluctuations in uii have no effect on the critical
properties of the superfluid density and specific heat at the
transition [5]; I will henceforth ignore them, and focus only
on strains due to quenched dislocations.

The clean model will not have a NS! SS transition if
Tclean
c < 0. When Tclean

c > 0, I will assume (as usual) that
t0�T� � � �T�T

clean
c �

jTclean
c j

, where � is a constant, near T � Tclean
c .

For a straight edge dislocation running along the z axis

FIG. 2. Superfluid density versus temperature data from
Chan’s group [12], plotted in the form ��3=4

s versus T. The
straight segment of this plot predicted by Eq. (4) is indicated by
the dashed line.
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with Burgers vector ~a along the y axis, uii �
4�

2���
ax
r2
?

�

4�
2���

a cos�
r?

[6], where � and � are the Lame elastic con-
stants [19]. Inserting this into Eq. (9) gives

 t�~r� � t0 �
g0 cos�
r?

; (10)

where g0 � ga� 4�
2���� [19].

Naively, the system is supersolid in those regions where
t� ~r�< 0. Actually, the mean field transition occurs when
the minimum energy  � ~r� first becomes nonzero. The
temperature at which this occurs is Tcond.

The Euler-LaGrange equation for Eq. (8) is

 r2 �
t�~r�
c
 �

u
c
 3: (11)

As noted in [7], this equation first has nontrivial ( � 0)
solutions when t0 drops below a critical value tcond �

� 2mE0

@
2 , where E0 is the quantum mechanical ground state

energy of a particle of mass m moving in the 2D dipole
potential V� ~r� � � p cos�

2mr?
with p � @

2g0

2mc . Variational treat-

ments [7,20] show that E0 � �	
mp2

@
2 , where 0:24< 	<

2. So a single dislocation line will, in mean field theory,
order once t0 < tcond �

	g02

2c . Using t0 � ��T�T
clean
c

jTclean
c j
�, this

implies Tcond � Tclean
c � 	g02

2�c jT
clean
c j> Tclean

c , and Tcond >

0, even if Tclean
c < 0, if 	g

02

2�c > 1. Hence, condensation onto
dislocations can happen, even when the clean system does
not order.

However, a one-dimensional system like a single dis-
location line cannot order. To order, these 1D ‘‘tubes’’ must
cross-link into a three-dimensional network. The typical
tube length is L, the interdislocation distance.

On length scales much greater than the tube radius ac�t�,
but & L, the only important variable is ‘‘Goldstone
mode’’; i.e., the phase ��~r� of  � ~r� � j �~r�jei�� ~r�. In the
tube between cross-link sites i and j, �, on these long
length scales, depends only on distance s along the tube.
This leads to a 1D Hamiltonian for this tube:

 H1D�f��s�g� � K1D�T�
Z L

0
�@s��2ds: (12)

From this, I can obtain an effective Hamiltonian
Heff��i; �j� coupling the �’s on sites i and j by integrating
out the �’s along the tube:

 e�
Heff ��i;�j� �
X1

n��1

Z
n
D��s�e�
H1D�f��s�g�; (13)

where the functional integral
R
n D��s� on the right-hand

side is taken with ��s� satisfying the boundary conditions
��0� � �i, ��L� � �j � 2�n, where the summation inte-
ger n in Eq. (13) reflects the 2� periodicity in �.

Each of the functional integrals
R
n D��s� in Eq. (13) can

most easily be done by rewriting ��s� as follows:

 ��s� � �i �
��j � �i � 2�n

L

�
s� ���s�; (14)

where the new integration variable ���s� satisfies the
boundary conditions ���0� � ���L� � 0. This gives
 

e�
Heff ��i;�j� �
X1

n��1

e�
�K1D=L���i��j�2�n�2

	
Z
D���s�e�
K1D

R
L

0
ds�@s���s��2 : (15)

The
R
D�� in Eq. (15) is independent of �i, �j, and n

(since the boundary conditions on �� are), and so is only an
overall multiplicative constant in e�BHeff , which only adds
an irrelevant constant C to Heff��i; �j�. Hence, Heff��i; �j�
becomes a ‘‘periodic Gaussian’’ [21]

 Heff��i; �j� � Vv��i � �j; J�

� �kBT ln
� X1
n��1

e��J=kBT���i��j�2�n�2
�
� C;

(16)

with the ‘‘Villain’’ coupling

 J �
K1D

L
: (17)

Adding up Heff��i; �j� for all of the bonds gives a model
for all of the sites (cross-links of tubes):

 Heff�f�ig� �
X

bonds

Vv��i � �j; J�: (18)

Although these couplings J will be random, due to the
random bond lengths of the tubes, such ‘‘random Tc’’
disorder is irrelevant in the renormalization group
sense[22], and can be ignored.

This Villain model (18) orders at a temperature Tc �
O�J=kB�; I will now use this to determine Tc�L�.

Consider first Tclean
c < 0. In this case, provided Tcond 


0, so that K1D�T� � 0, we can, for L! 1, estimate Tc by
replacing K1D�T� in Eq. (17) with its finite, nonzero, T � 0
value K1D�T � 0� � K0. This gives Eq. (6) with T0 �

K0

kB
.

Note that taking K1D�T� ! K0 in Eq. (17) is valid since
Tc�L! 1� ! 0.

For the case Tclean
c > 0, the radii ac�T� of the tubes of

supersolid diverge as T ! Tclean
c . To see this, note that the

locus on which t� ~r?� Eq. (10) is equal to tc is cos� �
r�tc�t0�
g0 which, for t0 > tc and p > �<�0 is a circle passing

through the origin, centered on the negative (positive) x
axis of radius

 ac�T� �
g0

2�t0 � tc�
: (19)

Inside this circle, t�~r?�< 0, so, naively, this boundary (19)
defines the supersolid tube. As T ! Tclean

c from above,
t0 ! tc and so ac�T� diverges: ac�T� /

1
T�Tclean

c
. Of course,
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this argument ignores the r2 term in Eq. (11). However,
since ac�T� ! 1 as T ! Tclean

c ,  varies slowly in space,
and we can neglect the r2 term in Eq. (11) and simply
balance the other two terms.

We can include fluctuations in this ‘‘local equilibrium’’
approximation simply by replacing the local superfluid
density �s�~r� by its value in a uniform system whose value
of t equals the local t� ~r�, provided ac�T� � ��T� / �T �
Tclean
c ���, where ��T� and � � 2

3 are the correlation length
and its critical exponent in the clean system. Since � < 1,
ac�T� Eq. (19) is indeed� ��t� as T ! Tclean

c from above.
This implies that the local superfluid density �s� ~r� for T
near, but slightly above, Tclean

c , is

 �local
s �~r� � B�tc � t� ~r���; (20)

where B is a constant, and I have used the Josephson
relation �s / �

�1 [23]. This �s acts as the 3D ‘‘spin-
wave stiffness’’ for the phase �� ~r�; that is,

 H3D �
1

2

Z
d3rKlocal�~r�j ~r�j

2; (21)

with Klocal� ~r� �
@

2

m2 �local
s � ~r�. In the case of a straight edge

dislocation, taking t�~r� from Eq. (10), �s� ~r� by Eq. (20),
and �� ~r� to vary only with distance s along the dislocation
line, the 1D spin-wave stiffness K1D becomes

 K1D �
@

2

m2

Z
d2r?�

local
s �~r?�: (22)

Since t� ~r?� is constant on circles of fixed radius a,
passing through the origin, with their centers on the x
axis, and is given by t� ~r?� �

p
2a� t0, I will change varia-

bles of integration in Eq. (22) to a. The area of the interval
�a; a� da is the difference 2�ada between the areas of
the corresponding circles, so I can rewrite Eq. (22) as

 K1D�T� �
�B@2

m2

Z p=2t0

0

�
p
2a
� �t0

�
�
ada

� C
�
�
�

�
B�t��2

0 g2a2 @
2

m2 ; (23)

where �t0 � t0 � tc, and C�x� � �3:184x
2x�1 �

2 for � � 2=3.
Since �t0 / T � Tclean

c , Eq. (23) implies that K1D�T� /
�T � Tclean

c ���2. Using thisK1D�T� in my earlier expression
(17) for J, and then equating the result to kBT, gives Eq. (2)
for Tc�L�.

As T drops further, eventually J�T; L� will be � kBT.
This is guaranteed to happen, since T can get within
roughly �T�L� / 1

L of Tclean
c before Eq. (23) breaks down.

Since K1D�Tclean
c � �T�L�� / L2��; J�Tclean

c � �T�L�� �
K1D

L / L
1�� ! 1 as L! 1, since � < 1. In this limit,

the phase order on the sites of the dislocation network is
nearly perfect, and the standard relationship between the
macroscopic (as opposed to the local) �s and 3D spin-wave
stiffness implies

 �S�T; L� � J�T; L�=LO
�
m2

@
2

�
; (24)

which, using (17) for J�T; L�, implies Eq. (4). Standard
results for the model (16) and (18) with the T and
L-dependent J found above then gives the behaviors of
Tc�C�, �s�T�, and the specific heat C�T� quoted earlier.
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