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(Received 27 April 2007; revised manuscript received 23 November 2007; published 23 January 2008)

A drawback of optical modes in microdisk cavities is their isotropic light emission. Here we report a
novel, robust, and general mechanism that results in highly directional light emission from high-quality
modes. This surprising finding is explained by a combination of wave phenomena (wave localization
along unstable periodic ray trajectories) and chaotic ray dynamics in open systems (escape along unstable
manifolds) and applies even to microlasers operating in the common multimode regime. We demonstrate
our novel mechanism for the limaçon cavity and find directional emission with narrow angular divergence
for a significant range of geometries and material parameters.
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The possibility to confine photons in all three spatial
dimensions using microcavities has triggered intense basic
and applied research in physics over the past decade [1],
e.g., research on ultralow threshold lasing [2,3], single-
photon emitters [4], and solid-state cavity quantum electro-
dynamics [5–7]. Prominent examples of optical microcav-
ities are whispering-gallery cavities such as microdisks [8–
10], microspheres [11–13], and microtoroids [14–16]
which trap photons for a long time � near the boundary
by total internal reflection. The corresponding whispering-
gallery modes have very high quality factors Q � !�,
where ! is the resonance frequency. The record Q factor
is around 7� 105 for semiconductors [9] and 6� 107 for
silica microdisks [10]. The high Q factors and the in-plane
light emission make microdisks attractive candidates for
several optoelectronic devices, especially for the nitride
material system [17] where other cavity designs such as
vertical-cavity surface-emitting laser (VCSEL) micropil-
lars face severe challenges in mirror fabrications [18].
Unfortunately, the possible use of microdisks is limited
by the fact that the in-plane light emission is isotropic.

Shortly after the first fabrication of microdisks it was
demonstrated that deforming the boundary of a disk allows
for improved directionality of emission and therefore for
more efficient extraction and collection of light [19–22].
Several shapes have been proposed and realized since then,
but only a few lead to light emission into roughly a single
direction [23,24] that is essential for applications like
single-photon sources. Moreover, all deformed microdisks
discussed in the literature have a serious problem, Q spoil-
ing [25]: The Q factor degrades dramatically upon defor-
mation, in the worst case ruling out any application. The
trade-off between the Q factor and directionality is not
only a problem of microdisks but also of microspheres,
microtoroids, and even of VCSEL micropillars [26].

Recently, a scheme to achieve highly directional emis-
sion without Q spoiling has been suggested [27]. It em-
ploys the characteristic modifications of spatial mode

structures near avoided resonance crossings. The drawback
of this approach is the existence of nearly degenerate
modes which can have different far-field patterns (FFPs).
If two such modes are excited simultaneously (typical
for present-day devices), the directionality might be lost.
Nearly degenerate modes with similar FFP do occur, but to
find them requires laborious numerical calculations and a
sophisticated adjustment of geometry parameters depend-
ing on refractive index, wavelength, and cavity size.

In this Letter we introduce a novel, robust, and generally
applicable mechanism to achieve highly directional light
emission from high-Qmodes in microdisks which does not
suffer from the above-mentioned drawback. The key to our
finding is to apply what is at the heart of quantum chaos
[28] and nonlinear dynamics [29] of open systems, respec-
tively: wave localization along unstable periodic ray tra-
jectories in systems with chaotic ray dynamics [30] and the
only recently acknowledged importance of the so-called
unstable manifold for the FFPs of microcavities [31–34].
The wave localization ensures the desired high Q factors,
whereas the unstable manifold provides the directional
emission. Concerning the realization of this scheme in
practice, adequate microcavity devices can be expected
to be easy to fabricate as no sophisticated adjustment of
parameters is required. They are, moreover, well suited for
multimode laser operation as all high-Q modes of a given
polarization possess similar FFPs.

A microdisk is a quasi-two-dimensional system de-
scribed by an effective index of refraction n. We assume
n � 3:3 (GaAs) both for transverse magnetic (TM) and
transverse electric (TE) polarization. A slight polarization
dependence of n is neglected; it could be adjusted in the
fabrication process, e.g., by changing the slab thickness.
For the boundary curve of the deformed microdisk we
choose the limaçon of Pascal which reads in polar coor-
dinates ���� � R�1� " cos��. Ray and wave dynamics in
the corresponding family of closed cavities (‘‘limaçon
billiards’’) have been discussed in the field of quantum
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chaos [35]. The limiting case of vanishing deformation
parameter " is the circle with radius R. Figure 1(a) illus-
trates a whispering-gallery ray trajectory in a circular
microdisk trapped by total internal reflection. A two-
dimensional phase space representation, the so-called
Poincaré surface of section (SOS), is shown in Fig. 1(b).
Whenever the trajectory hits the cavity’s boundary, its
position s (arclength coordinate along the circumference)
and tangential momentum sin� (the angle of incidence � is
measured from the surface normal) is recorded. For " � 0,
rotational invariance of the system implies conservation of
the angular momentum / sin�. Ignoring wave effects,
such a ray never leaves the cavity since it cannot enter
the leaky region between the two critical lines for total
internal reflection given by sin�c � �1=n.

Figures 1(c) and 1(d) show a trajectory in the limaçon
cavity for " � 0:43. In contrast to the case of small defor-
mation parameter " [25] the dynamics is predominantly
chaotic. Starting with an initial � well above the critical
line, a test ray (square, thick dots, and triangle) rapidly
approaches the leaky region ( sin� is not conserved) where
it escapes according to Snell’s and Fresnel’s laws. Without
refractive escape (n � 1, hard wall or closed billiard
limit), the trajectory would fill the phase space in a random
fashion (small dots). Periodic ray trajectories do exist but
are always unstable, except for the two islands in the leaky
region. Whispering-gallery trajectories are confined to the
tiny region j sin�j * 0:99.

While in the long-time limit the phase space of closed
chaotic systems is essentially structureless, cf. Fig. 1(d),
the phase space of an open chaotic system is structured by
the so-called ‘‘chaotic repeller’’ [29]. It is the set of points
in phase space that never visits the leaky region both in
forward and backward time evolution. The stable (un-
stable) manifold of a chaotic repeller is the set of points
that converges to the repeller in forward (backward) time
evolution. The unstable manifold therefore describes the
route of escape from the chaotic system. In the case of
light, Fresnel’s laws impose an additional, polarization
dependent weighting factor to the unstable manifold in
the leaky region [33], since at each reflection the intensity
inside is multiplied by the Fresnel reflection coefficient.

Following Refs. [32,33] the unstable manifold can be
uniquely computed as a survival probability distribution
calculated from an ensemble of rays starting uniformly in
phase space with identical intensity. Figure 2 depicts the
resulting Fresnel weighted unstable manifolds for the li-
maçon cavity using 50 000 rays. Note the following: (i) In
the leaky region, the manifold is concentrated on very few
high-intensity spots. We therefore expect a highly direc-
tional FFP. (ii) While in the case of TE polarization one
finds one spot with �> 0 (and another symmetry-related
one at s! smax � s, �! ��), the TM polarization case
possesses two of those.

The unstable manifold in the leaky region directly de-
termines the FFP. Mapping the unstable manifold in Fig. 2
to the far field by using Snell’s and Fresnel’s laws (for
generalization to curved interfaces, see [36,37]) we obtain
Fig. 3. Note that the FFP is shown only for the upper half
space (0� –180�); the lower half space is given by symme-
try. For TE polarization, we find directionality around� �
0, whereas in the TM case additional, smaller peaks occur.
The ray in the left upper inset represents one typical
trajectory emitting to � 	 0 (marked by arrows). The
emitting bounce (marked 1, 1s is the symmetry-related
counterpart), the three bounces before, and the one after
(marked 2) are shown. Whereas the trajectories are equal
for both polarizations, their intensities are different: As
visible in the right inset, the rays escaping at 1 hit the line
of the Brewster angle j�Bj � arctan1=n < arcsin1=n. In
the TE case, transmission is nearly complete and no inten-
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FIG. 1 (color online). (a) Whispering-gallery ray trajectory in
the circular microdisk. (b) Poincaré SOS showing the trajectory
(thick dots) in phase space; s is the arclength coordinate and � is
the angle of incidence. Typical trajectories fill a line of constant
sin�. The critical lines sin�c � �1=n enclose the leaky region.
(c) Chaotic ray trajectory in the limaçon cavity with " � 0:43.
(d) Poincaré SOS for the trajectory (thick dots) starting above the
critical line (square) and refractively escaping after only 20 boun-
ces (triangle). The small dots show a typical trajectory in the
corresponding closed billiard system.

FIG. 2 (color online). (a) Fresnel weighted unstable manifold
of the limaçon cavity for TE polarization. Magnification reveals
the differences between TE (b) and TM (c) polarization in the
leaky region, which originate from Fresnel’s law.
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sity can reach the next bounce 2. This causes the sharp
decrease in the intensity that is more clearly visible in
Fig. 2(b). The Fresnel law for TM polarization does not
show the Brewster angle feature. Therefore, a significant
percentage of the light is reflected toward bounce 2. Since
bounce 2 emits into a different direction, an appreciable
amount of intensity collects in a second far-field peak.

We have seen that chaotic ray dynamics can lead to
highly directional emission. Does this result of geometric
optics carry over to the wave optics? It has been demon-
strated that the FFP of optical modes can be strongly
influenced by the unstable manifold of the underlying ray
dynamics [31–33]. A consequence is that for fixed polar-
ization and cavity parameters the FFP is independent on
the internal mode structure [34]. This raises the hope that
the directionality observed in our ray simulations will
survive in wave optics. To this end we solve Maxwell
equations numerically using the boundary element method
[38]. This approach gives the resonant frequencies !, the
intrinsicQ factors (measuredQ factors will be reduced due
to surface roughness and residual absorption [9]), and the
spatial mode pattern. According to the discrete symmetry,
even and odd modes are distinguished.

The top panel of Fig. 4 shows the near- and the far-field
pattern of a high-Q TE mode. The normalized frequency
� � !R=c � 26:0933, c being the speed of light in vac-
uum, corresponds to, e.g., a free-space wavelength of about
900 nm for R � 3:75 �m. Indeed, as predicted by our ray
dynamical analysis the mode exhibits directional light
emission around � � 0. The angular divergence of 24�

is significantly smaller than the values reported for low-Q
disks [23,24], and also less than in Ref. [27]. Moreover, for
fixed polarization and cavity parameters, the FFPs of all

high-Q TE modes in this cavity have a similar envelope
even though the internal mode structure is in general differ-
ent; see, e.g., the odd-parity mode (dashed line) in the
upper panel which is quasidegenerate with the even-parity
solution (solid line). For the high-Q TM modes the same is
true with a slightly different FFP; see the lower panel of
Fig. 4.

Whereas the ray and wave based FFPs in Figs. 3 and 4,
respectively, agree remarkably well, other wave properties
seem to contradict the ray simulations: (i) the modes do not
look chaotic but spatially rather well confined; (ii) their Q
factors reach the present limit achievable for semiconduc-
tor microdisks [9] and seem to be too large given the fast
escape from the chaotic repeller.

To further investigate the character of these optical
modes we consider the Husimi projection [39], represent-
ing the wave analog of the Poincaré SOS. From ray-wave
correspondence one would expect that the Husimi projec-
tion is distributed uniformly over the unstable manifold.
However, Fig. 5(a) demonstrates that the TE mode is
localized around j sin�j 	 0:86 and has only exponentially
small intensity in the leaky region which explains the high
Q factor. A closer inspection [40] reveals that the mode
intensity is enhanced around an unstable periodic ray
trajectory [dots and inset in Fig. 5(a)] which is part of the
chaotic repeller. This phenomenon is called scarring [30]
and has been observed in several kinds of physical systems
including microcavities [41–43]. Note that the other
high-Q modes found in this system also exhibit localiza-
tion along—in general other—unstable periodic rays. The
Husimi projection of the TM mode in Fig. 4 looks similar
(not shown). The localization is even stronger, leading to a
higher Q factor.

Even though the Husimi projection has a small contri-
bution in the leaky region, it is precisely this outgoing light
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FIG. 4 (color online). Angular dependence of the electric far-
field intensity for a TE mode of even (top, solid line) and odd
parity (top, dashed) with � � 26:0933, Q 	 185 000, and a TM
mode of even (bottom, solid line) and odd parity (bottom, dashed
line) with � � 25:8069, Q 	 107; cf. Fig. 3. The insets contain
the near-field pattern of even-parity modes (middle) and its
external structure (right).
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FIG. 3 (color online). Far-field emission pattern for TE (top)
and TM polarization (bottom) calculated from an ensemble of
rays on the unstable manifold in Figs. 2(b) and 2(c). The insets
illustrate ray dynamics leading to directed emission. The dashed
line has strongly reduced intensity due to reflection near the
Brewster angle. Right inset: 250 rays were started in the rect-
angular region at 1 and followed forward (region at 2) and
backward (the three regions below the critical line). 1s and 2s
mark the symmetry-related bounces to 1 and 2.
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that determines the FFP. Figures 5(b) and 5(c) show the
Husimi projection in the leaky region. The convincing
agreement with the unstable manifold in Figs. 2(b) and
2(c) demonstrates its responsibility for the directional
emission, whereas scarring guarantees the high Q factor.

Note that, due to the observed agreement between ray
and wave simulations, our results are also applicable to
larger cavities. The particular deformation parameter " �
0:43 is the optimum value for the localization of the dis-
cussed FFPs with n � 3:3 but highly localized FFP and
high Q factors were also found for 0:41 & " & 0:49; i.e.,
fabrication tolerances are not crucial. Moreover, we tested
that our results are robust against variations of the refrac-
tive index and remain valid for 2:7 & n & 3:9.

In summary, we have proposed a deformed microdisk as
a novel cavity design for robust directional light emission
from high-Q modes. No complicated adjustment of ge-
ometry parameters is necessary, and the emission direc-
tionality is largely independent from wavelength, cavity
size, refractive index, and the details of the interior mode
structure. The latter finding is especially relevant for multi-
mode lasing devices. We trace our, at first sight, counter-
intuitive results back to (i) wave localization along
unstable periodic ray trajectories (scarring) ensuring high
Q factors and (ii) escape of rays along the unstable mani-
fold of the chaotic repeller ensuring directional emission.
The simplicity of the cavity design allows for easy fabri-
cation with a wide range of applications in photonics and
optoelectronics. The discussed mechanisms are not re-
stricted to disklike geometries but can, in principle, also
be exploited for other geometries such as deformed micro-
spheres and microtoroids.
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FIG. 5 (color online). (a) Husimi projection of the TE mode in
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simulation results.
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