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Using only the current empirical information on the nucleon electromagnetic form factors we map out
the transverse charge density in proton and neutron as viewed from a light front moving towards a
transversely polarized nucleon. These charge densities are characterized by a dipole pattern, in addition to
the monopole field corresponding with the unpolarized density. Furthermore, we use the latest empirical
information on the N ! � transition form factors to map out the transition charge density which induces
the N ! � excitation. This transition charge density in a transversely polarized N and � contains both
monopole, dipole and quadrupole patterns, the latter corresponding with a deformation of the N and �
charge distribution.
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Electromagnetic form factors (FFs) of the nucleon are
the standard source of information on the nucleon structure
and as such have been studied extensively; for recent re-
views see, e.g., Refs. [1–3]. The FFs describing the tran-
sition of the nucleon to its first excited state, ��1232�,
contain complementary information, such as the sensitivity
on the nucleon shape; see Ref. [4] for a recent review.

In more recent years, generalized parton distributions
(GPDs) have been discussed (see, e.g., Refs. [5–8] for
some reviews) as a tool to access the distribution of partons
in the transverse plane [9], and first calculations of these
spatial distributions have been performed within lattice
QCD [10,11] and hadronic models (see, e.g., [12] for a
recent evaluation). By integrating the GPDs over all parton
momentum fractions, they reduce to FFs. Given the large
amount of precise data on FFs it is of interest to exhibit
directly the spatial information which results from these
data. This has been done recently in Ref. [13] for an
unpolarized nucleon. In this Letter we extend that work
to the case of a transversely polarized nucleon as well as to
map out the transition charge density which induces the
N ! � excitation.

In the following we consider the electromagnetic (e.m.)
N ! N and N ! � transitions when viewed from a light
front moving towards the baryon. Equivalently, this corre-
sponds with a frame where the baryons have a large
momentum-component along the z axis chosen along the
direction of P � �p� p0�=2, where p (p0) are the initial
(final) baryon four-momenta. We indicate the baryon light-
front � component by P� (defining a� � a0 � a3). We
can furthermore choose a symmetric frame where the
virtual photon four-momentum q has q� � 0, and has a
transverse component (lying in the xy plane) indicated by
the transverse vector ~q?, satisfying q2 � � ~q2

? � �Q
2. In

such a symmetric frame, the virtual photon only couples to
forward moving partons and the � component of the
electromagnetic current J� has the interpretation of the
quark charge density operator. It is given by J��0� �
�2=3 �u�0���u�0� � 1=3 �d�0����0�d�0�, considering only

u and d quarks. Each term in the expression is a positive
operator since �q��q / j��qj2.

Following [9,13], one can then define quark transverse
charge densities in a nucleon as

 �N0 � ~b� �
Z d2 ~q?
�2��2

ei ~q?� ~b
1

2P�

	

�
P�;

~q?
2
; �jJ��0�jP�;�

~q?
2
; �
�
; (1)

where the two-dimensional vector ~b denotes the position
(in the xy plane) from the transverse c.m. of the nucleon,
and � � �1=2 denotes the nucleon (light-front) helicity.

Using the Dirac FF F1, Eq. (1) becomes [13]:

 �N0 �b� �
Z 1

0

dQ
2�

QJ0�bQ�F1�Q2�; (2)

with Jn denotes the cylindrical Bessel function of order n.
Note that �N0 only depends on b � j ~bj. It has the interpre-
tation of a quark charge density in the transverse plane for
an unpolarized nucleon, and is well defined for all values of
b, even when b is smaller than the nucleon Compton wave-
length. In contrast, the usual three-dimensional Fourier
transform of the matrix elements of J� in the Breit frame
(parameterized in terms of the Sachs FFs) becomes in-
trinsically ambiguous [14], due to the Lorentz contraction
of the nucleon along its direction of motion. Although this
does not affect the densities at larger distances (typically
larger than about 0.5 fm) the value for the densities at
smaller densities is merely a reflection of the prescription
how to relate the experimentally measured Sachs FFs at
large Q2 with the intrinsic charge and magnetization FFs.
A feature of viewing the nucleon when ‘‘riding a photon’’
is that one gets rid of the longitudinal direction. This allows
one to project the charge density (in the case of the J�

operator) on the transverse plane, which does not get
Lorentz contracted. In this way, it was found, e.g., in
Ref. [13] that the neutron charge density reveals the well-
known negative contribution at large distances, around
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1.5 fm, due to the pion cloud, a positive contribution at
intermediate b values, and a negative core at b values
smaller than about 0.3 fm. One can understand the negative
value of the neutron �0�b � 0� from Eq. (2) and the
observation that over the whole measured Q2 range the
neutron FF F1 is negative. In contrast, the Breit-frame
density, corresponding with the Fourier transform of GE,
is positive at b � 0 for the neutron due to the neutron FF
GE, which is positive over the whole measured Q2 range.

It was shown in Ref. [9] that one can also define a
probability distribution to find a quark with a given mo-
mentum fraction x of P�, and at a given transverse position
b in the nucleon, when considering a nucleon polarized in
the xy direction. We denote this transverse polarization
direction by ~S? � cos�Sêx � sin�Sêy. When integrating
the resulting GPD, depending on x and ~b, over x, one can
define a quark charge density in the transverse plane for a
transversely polarized nucleon as

 �NT � ~b� �
Z d2 ~q?
�2��2

ei ~q?� ~b
1

2P�

�
P�;

~q?
2
; s? � �

1

2
jJ��0�jP�;�

~q?
2
; s? � �

1

2

�
; (3)

with s? the nucleon spin projection along the direction of
~S?. The transverse spin state can be expressed in terms
of the light-front helicity spinor states as js? � �

1
2i �

�j� � � 1
2i � e

i�S j� � � 1
2i�=

���
2
p

. By working out the
Fourier transform in Eq. (3), one obtains
 

�NT � ~b� � �N0 �b� � sin��b ��S�

	
Z 1

0

dQ
2�

Q2

2MN
J1�bQ�F2�Q

2�; (4)

where the second term, which describes the deviation from
the circular symmetric unpolarized charge density, de-

pends on the orientation of ~b � b�cos�bêx � sin�bêy�.
In Eq. (4), F2 is the Pauli FF and MN the nucleon mass.

In the following we are using the current empirical
information on the nucleon e.m. FFs to extract the trans-
verse charge density in a transversely polarized nucleon,
complementing the pictures given in [13], for the trans-
verse charge densities in an unpolarized nucleon. For the
proton e.m. FFs, we use the recent empirical parameteri-
zation of [15] and show the resulting transverse charge
density for a proton polarized along the x axis (i.e., for
�S � 0) in Fig. 1. One notices from Fig. 1 that polarizing
the proton along the x axis leads to an induced electric
dipole moment along the negative y axis which is equal to
the value of the anomalous magnetic moment, i.e., F2�0�
(in units e=2MN) as first noticed in [9]. One can understand
this induced electric dipole field pattern based on the
classic work of Ref. [16] (see also the pedagogical expla-
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FIG. 1 (color online). Quark transverse charge densities in the
proton. The upper panel shows the density in the transverse plane
for a proton polarized along the x axis. The light (dark) regions
correspond with largest (smallest) values of the density. The
lower panel compares the density along the y axis for an
unpolarized proton (dashed curve), and for a proton polarized
along the x axis (solid curve). For the proton e.m. FFs, we use the
empirical parameterization of Arrington et al. [15].
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FIG. 2 (color online). Same as Fig. 1 for the quark transverse
charge densities in the neutron. For the neutron e.m. FFs, we use
the empirical parameterization of Bradford et al. [18].
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nation in [17]). The nucleon spin along the x axis is the
source of a magnetic dipole field, which we denote by ~B.
An observer moving towards the nucleon with velocity ~v
will see an electric dipole field pattern with ~E0 � ��� ~v	
~B� giving rise to the observed effect.

For the neutron e.m. FF, we use the recent empirical
parameterization of Ref. [18]. The corresponding trans-
verse charge density for a neutron polarized along the x
axis is shown in Fig. 2. One notices that the neutron’s
unpolarized charge density gets displaced significantly
due to the large (negative) value of the neutron anomalous
magnetic moment, F2n�0� � �1:91, which yields an in-
duced electric dipole moment along the positive y axis.

We next generalize the above considerations to the N !
� e.m. transition as it allows access to l � 2 angular
momentum components in the nucleon and/or � wave
functions. We will use the empirical information on the
N ! � transition FFs to study the quark transition charge
densities in the transverse plane which induce the e.m.
N ! � excitation. It is customary to characterize the three
different types of the �N� transitions in terms of the
Jones-Scadron FFs G
M, G
E, G
C [19], corresponding with
the magnetic dipole (M1), electric quadrupole (E2) and
Coulomb quadrupole (C2) transitions, respectively; see
Ref. [4] for details and definitions.

We start by expressing the matrix elements of the J��0�
operator between N and � states as
 �
P�;

~q?
2
; ��jJ��0�jP�;�

~q?
2
; �N

�
� �2P��ei��N�����q

	G����N
�Q2�; (5)

where �N (��) denotes the nucleon (�) light-front helic-
ities, and where ~q? � Q�cos�qêx � sin�qêy�. The helic-
ity FFs G����N

depend on Q2 only and can equivalently be
expressed in terms of G
M, G
E, and G
C.

We define a transition charge density for the unpolarized
N ! � transition, given by the Fourier transform

 �N�
0 �b� �

Z 1
0

dQ
2�

QJ0�bQ�G���1=2���1=2��Q
2�; (6)

where the helicity conserving N ! � FF G�
��1=2���1=2� can

be expressed in terms of G
M, G
E, and G
C as
 

G�
��1=2���1=2� � I

�M� �MN�

MNQ
2
�

���
3

2

s �
�
Q2

4

�

	

�
G
M �G



E

3

Q2
�

��3M� �MN�

	 �M� �MN� �Q2�

� 2G
C

�
�
�M� �MN�

M�
�

3Q2

Q2
�

�	
; (7)

with M� � 1:232 GeV the � mass, and where the isospin
factor I �

��������
2=3

p
for the p! �� transition, which we

consider in all of the following. We also introduced the

shorthand notation Q� �
���������������������������������������
�M� �MN�

2 �Q2
p

.
The above unpolarized transition charge density gives us

one combination of the three independent N ! � FFs. To
get information from the other combinations, we consider
the transition charge densities for a transversely polarized
N and �, both along the direction of ~S? as

 �N�
T �

~b� �
Z d2 ~q?
�2��2

ei ~q?� ~b
1

2P�

�
P�;

~q?
2
; s�
? � �

1

2
jJ��0�jP�;�

~q?
2
; sN? � �

1

2

�
; (8)

where sN? � �1=2 (s�
? � �1=2) are the N (�) spin projections along the direction of ~S?, respectively. By working out the

Fourier transform in Eq. (8), one obtains
 

�N�
T �

~b� �
Z 1

0

dQ
2�

Q
2
fJ0�bQ�G���1=2���1=2� � sin��b ��S�J1�bQ��

���
3
p
G�
��3=2���1=2� �G

�
��1=2���1=2��

� cos2��b ��S�J2�bQ�
���
3
p
G�
��3=2���1=2�g: (9)

One notices from Eq. (9) that besides half the unpolarized transition density, one obtains two more linearly independent
structures. The N ! � FF combination with one unit of (light-front) helicity flip, which corresponds with a dipole field
pattern in the charge density, can be expressed in terms of G
M, G
E, and G
C as

 

���
3
p
G�
��3=2���1=2� �G

�
��1=2���1=2� � I

�M� �MN�

MNQ2
�

���
3

2

s
Q
�
G
M�M� �MN� �G



C
Q2

2M�

	
; (10)

whereas theN ! � form factor with two units of (light-front) helicity flip, corresponding with a quadrupole field pattern in
the charge density, can be expressed as

 G���3=2���1=2� � I
�M� �MN�

MNQ
2
�

3

4
���
2
p Q2

�
G
M �G



E

�
1�

4M��M� �MN�

Q2
�

�
�G
C

2Q2

Q2
�

	
: (11)

We show the results for the N ! � transition densities both for the unpolarized case and for the case of transverse
polarization in Fig. 3. We use the empirical information on the N ! � transition FFs from [20]. One notices that the
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unpolarized N ! � transition density displays a behavior
very similar to the neutron charge density (dashed curve in
Fig. 2), having a negative interior core and becoming
positive for b  0:5 fm. The density in a transversely
polarized N and � shows both a dipole pattern, and a
quadrupole pattern. The latter, shown separately in
Fig. 3, allows to cleanly quantify the deformation in this
transition charge distribution.

In summary, we used the recent empirical information
on the nucleon and N ! � e.m. FFs to map out the
transverse charge densities in unpolarized and transversely
polarized nucleons and for the N ! � transition. The
nucleon charge densities are characterized by a dipole
pattern, in addition to the monopole field corresponding
with the unpolarized density. The N ! � transition charge
density in a transversely polarized N and � contains both
monopole, dipole and quadrupole patterns, the latter cor-
responding with a deformation of the N and � charge
distribution.
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FIG. 3 (color online). Quark transverse transition charge den-
sity corresponding with the p! �� transition. Upper panel:
when N and � are unpolarized (�N�

0 ). Middle panel: when N and
� are polarized along the x-axis (�N�

T ). Lower panel: quadrupole
contribution to �N�

T . For the N ! � e.m. FFs, we use the
empirical parameterization of MAID2007 [20].
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