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We analyze how individual eigenvalues of the QCD Dirac operator at nonzero quark chemical potential
are distributed in the complex plane. Exact and approximate analytical results for both quenched and
unquenched distributions are derived from non-Hermitian random matrix theory. When comparing these
to quenched lattice QCD spectra close to the origin, excellent agreement is found for zero and nonzero
topology at several values of the quark chemical potential. Our analytical results are also applicable to
other physical systems in the same symmetry class.
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Introduction.—Hermitian random matrix theory (RMT),
which describes systems with real spectra, enjoys many
applications in physics and beyond. Dropping the
Hermiticity constraint results in matrices whose eigenval-
ues are, in general, complex. Examples are the Ginibre
ensembles [1] or their chiral counterparts [2]. Although
these ensembles describe non-Hermitian operators, they
have found many applications (see [3] for a recent review),
ranging from dissipation in quantum maps [4] over quan-
tum chromodynamics (QCD) at nonzero quark chemical
potential [5] to the brain auditory response described by
nonsymmetric correlation matrices [6].

Observables that are typically computed in RMT are
spectral correlation functions. Alternatively, one can study
the distributions of individual eigenvalues, provided that
the latter can be ordered. For RMT with real eigenvalues,
all such distributions are known and have found a variety of
important applications. For example, the largest eigenvalue
follows the Tracy-Widom distribution [7] and appears in
the longest increasing subsequence of partitions [8] or
growth processes [9]. The smallest eigenvalue distribution
in chiral RMT has become a standard tool in lattice QCD to
extract the low-energy constant (LEC) � that appears in
chiral perturbation theory (chPT) and is related to the
chiral condensate [10]. This distribution is also sensitive
to the gauge field topology and can be used to distinguish
different patterns of chiral symmetry breaking [11].

In this Letter, we generalize some of these results to the
case of non-Hermitian chiral RMT in the unitary symmetry
class. We study the distributions of individual eigenvalues
in the complex plane and derive analytical results for the
chiral RMT introduced in Ref. [12]. Our main focus will be
on QCD, but our findings are also relevant for other sys-
tems with complex eigenvalues in the same symmetry
class.

In QCD, a nonzero quark chemical potential� leads to a
complex spectrum of the Dirac operator. In the large-
volume limit, chiral RMT is equivalent [13] to the chiral

effective theory for the epsilon-regime of QCD [14], which
is a particular low-energy limit of the full theory. Here, a
virtue of � � 0 is that � couples to the second LEC in
leading order of chPT, F, which is related to the pion decay
constant [15]. A comparison of lattice QCD data to indi-
vidual complex Dirac eigenvalue distributions from RMT
thus allows us to determine both � and F (for related
methods, see Refs. [16,17]).

Unfortunately, lattice QCD with dynamical fermions at
� � 0 faces a serious difficulty due to the loss of reality of
the action. It is very hard to obtain significant statistics in
unquenched simulations, and therefore we will only com-
pare to quenched simulations below. However, for �<
m�=2 or �2F2V < 1 (where m� is the pion mass and V is
the volume), the sign problem is not severe [18], and our
method can be used to determine F from such unquenched
lattice data. Therefore, we also derive RMT results for
unquenched QCD, thus adding to the predictions for spec-
tral densities [19] and the average phase factor [18].

What is known from RMT for individual eigenvalue
correlations in the complex plane? For the nonchiral, uni-
tary Ginibre ensemble, the repulsion (or spacing distribu-
tion) of complex levels was computed in [4] and
successfully compared to lattice QCD data in the bulk of
the spectrum [20]. For maximal non-Hermiticity, the dis-
tribution of the largest eigenvalue with respect to radial
ordering is also known [21]. However, in QCD, it is the
eigenvalues closest to the origin that carry information
about topology and LECs, and therefore we concentrate
on these in the following.

The complex spectral correlation functions of the QCD
Dirac operator at� � 0 were computed from different (but
equivalent) chiral RMTs in Refs. [12,19,22] and compared
to quenched lattice QCD in Refs. [17,23]. Later, a Dirac
operator with exact chiral symmetry at � � 0 was con-
structed [24,25] and tested against chiral RMT for topo-
logical charge � � 0, 1. Here, we compare the data of
Ref. [24] to our newly derived individual complex eigen-
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value distributions, resulting in a much improved signal.
For a recent review, we refer to Ref. [26].

Complex eigenvalue distributions.—We start by defin-
ing the gap probability and the distribution of an individual
eigenvalue in the complex plane. Suppose the partition
function Z can be written in terms of N complex eigen-
values zj of some operator, with a joint probability distri-
bution function (JPDF) P �fzg�, symmetric in all its
arguments, to be specified. (For simplicity, we consider
only JPDF’s with additional symmetry z$ �z, restricting
ourselves to the upper half-plane C�.) The complex eigen-
value density correlation functions are defined as

 Rk�z1; . . . ; zk� �
1

Z

N!

�N � k�!

YN
j�k�1

Z
C�

d2zjP �fzg�: (1)

The simplest example R1�z� is just the spectral density. The
gap probability Ek�J� is defined as the probability that there
are exactly k eigenvalues inside the set J and N � k
eigenvalues in its complement �J � C�=J,

 Ek�J� �
1

Z

N!

�N � k�!

Yk
j�1

Z
J
d2zj

YN
i�k�1

Z
�J
d2ziP �fzg�: (2)

If all Rk are known, the gap probabilities follow as in the
real case [27],

 Ek�J� �
XN�k
‘�0

��1�‘

‘!

Yk�‘
j�1

Z
J
d2zjRk�‘�z1; . . . ; zk�‘�: (3)

Parameterizing the boundary @J of J in C� as z��� �
x��� � iy���, we can define the probability pk�J; �� for k�
1 eigenvalues to be inside J, for the eigenvalue zk � z��� to
be on the contour @J at �, and for N � k eigenvalues to be
in the complement �J,

 pk�J; �� �
k
Z

�
N
k

�Yk�1

j�1

Z
J
d2zj

YN
i�k�1

Z
�J
d2ziP �fzg�jzk�z���:

(4)

(Because eigenvalues repel each other in RMT, the proba-
bility of finding two eigenvalues at z��� � 0 is zero.) An
ordering on C� is induced by a family of sets of increasing
area with mutually nonintersecting contours. Via the
Riemann mapping theorem, this can always be reduced
to radial ordering. Definitions (2) and (4) are related
through a variational derivative,

 

�Ek�J�
�z���

� k!�pk�J; �� � pk�1�J; ���: (5)

Employing the expansion (3), we can express the pk�J; ��
through densities. For example, for the first eigenvalue,

 p1�J; �� � R1�z�����
Z
J
d2z1R2�z1; z�����

��1�2

2!

	
Z
J
d2z1

Z
J
d2z2R3�z1; z2; z����� . . . (6)

Results from RMT.—The above considerations hold for
any JPDF, including the JPDF appearing in the lattice QCD
partition function in terms of complex Dirac operator
eigenvalues and the JPDF of chiral RMT. We now consider
the latter. The RMT for unquenched QCD with� � 0 [12]
we use here is given by

 P �fzig� �
YN
j�1

w�Nf;���zj�j�N�fz
2g�j2: (7)

The Vandermonde, �N�fz2g� �
QN
i>j�z

2
i � z

2
j �, coming

from the diagonalization of complex matrices of dimension
N 	 �N � �� (we take � 
 0 for convenience), leads to a
repulsion of eigenvalues. (For the chiral RMTs correspond-
ing to adjoint or two-color QCD, the Jacobians will be
different, leading to different patterns of eigenvalue repul-
sion, see, e.g., Ref. [26].) The weight w depends on Nf
dynamical quark flavors with masses mf (f � 1; . . . ; Nf)
and on the number � of exactly zero eigenvalues (corre-
sponding to the topological charge),
 

w�Nf;���zj� �
YNf
f�1

�m2
f � z

2
j �jzjj

2��2K�

�
N�1� �̂2�

2�̂2 jzjj
2

�

	 e�N��̂
2�1�=4�̂2��z2

j�z
�2
j �; (8)

where K� is a modified Bessel function and �̂ is the
chemical potential in the random matrix model. The first
factor in Eq. (8) originates from the Dirac determinants.
The non-Gaussian weight function results from an integra-
tion over angular and auxiliary variables [12]. For �̂! 0,
the zk are back on the imaginary axis. Complex RMT
yields the following result for the densities [28],

 Rk�z1; . . . ; zk� �
Yk
‘�1

w�Nf;���z‘� det
1�i;j�k

KN�zi; z�j �; (9)

given in terms of the kernel KN�zi; z�j � of (bi-)orthogonal
polynomials with respect to the weight of Eq. (8). In the
quenched case (Nf � 0), these are given by Laguerre
polynomials in the complex plane [12]. All unquenched
density correlations are given explicitly in Ref. [19]. A
determinental expression follows for the Ek�J� in terms of
the kernel operator times the characteristic function of J.
Equation (3) is called its Fredholm determinant expansion.

As mentioned above, in the limit of large volume V,
RMT is equivalent to QCD in the epsilon-regime [13]. In
this regime, the chemical potential, the quark masses, and
the Dirac eigenvalues are rescaled such that the parameters
� � 2N�̂2�� VF2�2�, �f � Nmf�� V�mf�, and �k �
Nzk�� V�zk� stay finite in the large-N (large-V) limit. In
parentheses, we have given the scaling of these parameters
in terms of the LECs of chPT.

Quenched case.—In the quenched case, the RMT re-
sult for the microscopic spectral density 	1��� �
limN!1R1�� � z=N�=N is given by [12,22]
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 	1��� �
j�j2K��

j�j2

4� �

2��
e���

2���2�=8�
Z 1

0
dtte�2�t2 jI��t��j2;

(10)

where I� is a modified Bessel function. The rescaled kernel
giving all correlation functions according to Eq. (9) was
derived in Refs. [12,19]. In Fig. 1, we show as an example
the density 	1��� and the distribution p1��� of the first
eigenvalue from Eq. (6) (in which J is chosen to be semi-
circular and only the first three terms are included). As in
the case of real eigenvalues [27], we see that the expansion
converges rapidly. Higher-order terms merely assure that
p1��� remains zero for large j�j.

For increasing �, the quenched density Eq. (10) rapidly
becomes rotationally invariant close to the origin. In terms
of the new variable �̂ � �=2

����
�
p

, it becomes

 	1��̂� �
�!1 2j�̂j2

�
K��j�̂j2�I��j�̂j2�: (11)

In this limit, we can derive a closed expression for the gap
probability [29]. Because of the rotational symmetry, we
choose J to be a semicircle of radius r � j�̂j and obtain
 

E0�r� �
Y1
‘�0

�
r4‘�2��2K��1�r

2�

22‘��‘!�‘� ��!
� r2�K��1�r2�I�‘�2�

��2 �r
2�

� K��2�r
2�I�‘�1�

��1 �r
2��

�
; (12)

where we have introduced the incomplete Bessel function
I�‘�� �x� �

P‘
n�0�x=2�2n��=n!�n� ��! for ‘ 
 0, and zero

otherwise. Our quenched expression Eq. (12) generalizes
the corresponding result of Ref. [4] for the nonchiral
Ginibre ensemble, which is given in terms of incomplete
exponentials e‘�x� �

P‘
n�0 x

n=n!.
Denoting each factor in Eq. (12) by 1� 
‘, expressions

for the Ek�r� easily follow in terms of the 
‘ [30]. The
radially ordered eigenvalue distributions are then obtained
from the Ek�r� via Eq. (5), leading to

 pk�r� � �
1

�r
@
@r

Xk�1

n�0

En�r�
n!

: (13)

Figure 2 shows that the individual eigenvalue distributions
pk�r� nicely add up to the density Eq. (11).

Comparison with lattice data.—We now come to the
comparison of our analytical results to quenched lattice

QCD data. For details of the simulation, we refer to
Ref. [24]. The gauge fields were generated in the quenched
approximation on a 44 lattice at � � 5:1 (see [24] for an
explanation of these choices). The Dirac operator intro-
duced in Ref. [24] is a generalization of the overlap Dirac
operator [31] to � � 0. It satisfies a Ginsparg-Wilson
relation [32] and has exact zero modes at finite lattice
spacing. We can therefore test our predictions in different
sectors of topological charge �. In Ref. [24], complete
spectra of the generalized overlap operator were computed
for several values of � and large numbers of configura-
tions, and these data are used in the comparisons to the
RMT results below. We also used the fit parameters � and
F from Ref. [24] to determine � and �; i.e., no additional
fits were performed.

For the contours @J, we again choose semicircles, for all
values of �. Since we prefer to show 2D plots, we have
integrated over the phase of the complex number � � Rei�

and display only the radial dependence. Results for � � 0,
1, 2 are shown in Fig. 3 for � � 0:1 and � � 0:2, corre-
sponding to � � 0:174 and � � 0:615, and in Fig. 4 for
� � 0:3 and � � 1:0, corresponding to � � 1:42 and
� � 4:51. (The lattice spacing a has been set to unity).
For all values of �, we compare the data to the expansion
Eq. (6), in which only the first three terms were used.

For � � 1:0, the data were found to be approximately
rotationally invariant, and we also compare them to the
exact result in the large-� limit from Eqs. (12) and (13).

 0.1

 0.2

 0.3 ρ
1
(ξ)

-2
-1

0
1

2

0

0
2

4
6

Re(ξ) Im(ξ)

ρ (ξ)

 0.1

 0.2

 0.3 p
1
(ξ)

-2
-1

0
1

2

0

0
2

4
6

Re(ξ) Im(ξ)

(ξ)

FIG. 1 (color online). Quenched density 	1��� of Eq. (10)
(left), and quenched p1��� from Eq. (6) (including the first three
terms) for circular J (right), both for � � 0 and � � 0:174.
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FIG. 2 (color online). Quenched spectral density Eq. (11) and
distributions of the first eight eigenvalues Eq. (13), as well as
their sum, all in the large-� limit, for � � 0 (left) and � � 1
(right).
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FIG. 3 (color online). Integrated distribution P1�R� �R
�
0 d�Rp1�R; �� of the first eigenvalue for � � 0, 1, 2 as a

function of the radius R for � � 0:1 (left) and � � 0:2 (right).
The solid lines are the RMT results from Eq. (6), the histograms
are the quenched lattice data of Ref. [24]. The bending-up of the
RMT curves for large R is an artifact of using only the first three
terms in the expansion (6), see text.
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(Because of the rotational invariance, only the ratio �=F
could be determined for� � 1:0 in Ref. [24], see Eq. (11).
In this case the value of � used in Eq. (6) is an extrapola-
tion, assuming that � is independent of �). The agreement
between data and analytical curves is excellent except for
� � 1, 2 at � � 1:0 (see Fig. 4). In these two cases, we
have left the range of validity of RMT.

We emphasize that while the rise of the distributions
from zero was in principle already tested in Ref. [24]
through the density (see Fig. 1 or 2), their decrease repre-
sents a new, parameter-free test. Note also that because of
the integration over the phase, the signal is much better
than in Ref. [24]. This allows us, for the first time, to
successfully test the RMT predictions for � � 2.

Figures 3 and 4 also show the effect of truncating the
Fredholm expansion (6): The analytical curves bend up for
large R after (almost) touching zero. Higher-order terms in
the expansion (6) only affect the tail of the distributions.
They will ‘‘repair’’ the bending-up and ensure that the tails
remain zero, just as the data. The same effect was observed
earlier for real eigenvalue distributions [27]. This feature of
our approximation can be seen most clearly when compar-
ing to the exact result in the large-� limit, see Fig. 4 (right),
in which we can observe how the expansion converges in
the case of large �.

Conclusions.—We have shown that the distributions of
individual complex eigenvalues from non-Hermitian RMT
agree very well with the corresponding distributions of the
complex eigenvalues of the quenched QCD Dirac operator
closest to the origin in three different topological sectors.
As in the Hermitian case, these distributions are much
easier to compare with than the density, in which a plateau
may not be observable due to appreciable finite-volume
corrections. Our analytical results are also relevant for
other non-Hermitian systems in the chiral unitary symme-
try class. In the future, it would be interesting to compute
(and apply) similar results for the orthogonal and symplec-
tic symmetry classes.
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FIG. 4 (color online). Same as Fig. 3, but for � � 0:3 (left)
and � � 1:0 (right). For � � 1:0, we also show the exact RMT
result in the large-� limit from Eq. (13).
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