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Interest has focused recently on low energy implications of a nontrivial scale invariant sector of an
effective field theory with an IR fixed point, manifest in terms of ‘‘unparticles’’ with peculiar properties. If
unparticle stuff exists it could couple to the stress tensor and mediate a new ‘‘fifth’’ force (‘‘ungravity’’).
Under the assumption of strict conformal invariance in the hidden sector down to low energies, we
compute the lowest order ungravity correction to the Newtonian gravitational potential and find scale
invariant power law corrections of type �RG=r�2dU�1, where dU is an anomalous unparticle dimension and
RG is a characteristic length scale where the ungravity interactions become significant. It is shown that a
discrimination between extra dimension models and ungravity is possible in future improved submilli-
meter tests of gravity.
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Recently much interest has been generated by the pos-
sibility that a nontrivial scale invariant sector of an ef-
fective field theory [1] characterized by unparticles [2]
could play a role in low energy physics. This has led to
several further investigations of unparticle effects in col-
lider physics and elsewhere [3]. In models of this type one
assumes that the ultraviolet theory has hidden sector op-
eratorsOUV of dim dUV possessing an IR fixed point. These
couple via a connector sector with the standard model
operators On

SM of dimension n, generating an effective
interaction OUVO

n
SM=M

dUV�n�4
U . It is then assumed that

the fields of the hidden sector undergo dimensional trans-
mutation at scale �U generating scale invariant unparticle
fields O with dimension dU which give the interaction

 

�
�U

MU

�
dUV�n�4 OOn

SM

�du�n�4
U

: (1)

The operatorO could be a scalar, a vector, a tensor, or even
a spinor. If O is a tensor of rank two it could couple to the
stress tensor and its exchange between physical particles
could lead to a modification of Newtonian gravity. We
discuss this issue in this Letter.

We work strictly within the framework where conformal
invariance holds down to low energies, and thus we forbid
scalar unparticle operators of dimension dU < 2 which
could have couplings to the Higgs field of the type H2O.
The presence of a super-renormalizable operator destroys
conformal invariance once H develops a VEV [4]. In our
analysis here we consider an effective operator of the type

 ��
1

�du�1
U

���
g
p
T��OU

��; (2)

where �� is defined by �� � ��1
U ��U=MU�

dUV . We assume
that OU

�� transforms like a tensor under the general coor-
dinate transformations, and thus the interaction of Eq. (2)
gives an action which is invariant under the transforma-
tions. For convenience we assume that OU

�� is traceless.

The addition of Eq. (2) to the action changes the stress-
energy tensor so that the new tensor is T �� �

T�� � ���=�du�1
U �g��T��OU

��. The conservation condi-
tion in this case is T ��

;� � 0. The interaction of Eq. (2)
implies that the unparticles can be exchanged between
massive particles, and this exchange creates a new force,
a ‘‘fifth’’ force, which we call ‘‘ungravity’’ which adds to
the force of gravity. We wish to compute the correction to
the Newtonian gravitational potential arising from the
exchange of the unparticles to the lowest order. In this
case one may neglect all the gravitational effects and re-
place g�� by ���. The quantity that enters in the compu-
tation of the unparticle exchange contribution is the
unparticle propagator

 �����
U �P� �

Z
eiPxh0jT�O��

U �x�O
��
U �j0id

4x: (3)

An analysis of this propagator using spectral decomposi-
tion [2,3] gives

 �����
U �P� �

AdU
sin��dU�

P������P2�dU�2; (4)

where P���� has the form P���� � 1
2 �P

��P�� �
P��P�� � �P��P���. Here � � 2=3 and P�� �
����� � P�P�=P2�, and AdU is given by

 Ad �
16�5=2

�2��2dU
��dU � 1=2�

��dU � 1���2dU�
: (5)

Further, since we are interested in computing the effects of
the unparticles to the lowest order, we can replace T �� by
T�� and replace T ��

;� � 0 by T��;� � 0. This condition
implies that momentum factors when acting on the source
give a vanishing contribution, and the relevant part of
P���� can be written as P���� � 1

2 ��
����� � ������ �

��������. For the case of the graviton exchange � � 1,
and retaining � in the analysis will provide a quick check
to the graviton exchange limit.
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We have carried out an analysis of the unparticle ex-
change along with the one graviton exchange and com-
puted the effective potential in the nonrelativistic limit. We
find

 V�r� � �m1m2G
�
1

r
�

	2

�2dU�2
U

�2� ��

�2��2�dU�1�

2����
�
p

	
��2� dU���dU �

1
2�

��2dU�
fdU�r�

�
; (6)

where 	 � ��=� and � � M�1
Pl where MPl is the Planck

massMPl � 2:4	 1018 GeV, and where fdU�r� is given by
fdU�r� � 4�

R
�d3q=�2��3�e�iq
r=�q2�2�dU . The first term

in the parentheses in Eq. (6) is the Newtonian term, while
the second term is the ungravity correction. One can easily
check that the ungravity correction produces the correct
Newtonian potential for the case dU � 1 and � � 1 since
fdU�r� � 1=r in this case. However, for dU different from
unity the ungravity effects produce an r dependence of the
form 1=r2du�1 which can be differentiated from the effects
of ordinary gravitation. An explicit evaluation gives
 

V�r� � �
m1m2G

r

�
1�

�
RG
r

�
2dU�2

�
;

RG �
1

��U

�
MPl

M�

�
�1=dU�1�

	

�
2�2� ��

�

��dU �
1
2���dU �

1
2�

��2dU�

�
�1=2dU�2�

;

(7)

where M� � ��1
� . The choice dU < 1 will produce correc-

tions to the gravitational potential which fall off slower
than 1=r and thus would modify the very large distance
behavior of the gravitational potential, which appears un-
desirable. Thus a sensible constraint on dU is dU > 1 in
which case the ungravity contribution to the potential falls
off faster than 1=r and the short distance behavior will be
affected. Constraints of conformal invariance in this case
require [5,6] dU > 1� s, where s is the spin of the opera-
tor, and thus for a rank one tensor operator dU > 2 and for
a rank two dU > 3. Let us now consider a spin zero
unparticle operator with dU � 2 with coupling of the
type ��

���
g
p
T�;�OU=�dU�1

U . In this case the modified
Newtonian potential can be gotten from Eq. (7) by replac-
ing �2� �� by 2. With this choice the corrections to the
potential can begin with terms of O�1=r�4�2
��, 
 > 0.

The short distance ungravity contribution is constrained
by the recent precision submillimeter tests of the gravita-
tional inverse square law [7,8]. The current experiment
probes short distances up to around 0.05 mm, and no
significant deviation from the inverse square law is seen.
However, better precision experiments in the future will be
able to explore the parameter space of the model more
thoroughly. Returning now to Eq. (7), the quantity RG may
be constrained by experiment. The usual parametrization
of the correction to Newtonian gravity in terms of a
Yukawa term is not directly suitable for the present case.

Instead, we extrapolate the power law limits in Table I of
Ref. [8] to obtain an upper limit on RG as a function of dU.
The result of this exercise is shown in the left panel of
Fig. 1, where the current data excludes the region above the
curve. In the right panel in Fig. 1 we present an analysis of
the allowed region of the �U �M� parameter space which
follows from Eq. (7) when combined with the constraint on
RG. Here the regions below the curves are excluded by the
current data.

It is of interest that for M� ’ MPl the value of �U

required for proximity to the present bound is very low.
In order to assess this possibility and explore the constraint
of a conformal fixed point we examine an SU�N� gauge
theory with Nf massless Dirac fermions. In this case an
infrared fixed point occurs at a coupling [9] �� �
�4��11N � 2Nf�=�34N2 � 10NNf � 3�N2 � 1�Nf=N�.
For values ofNf close to and below 11N=2 but aboveNc

f �

N�100N2 � 66�=�25N2 � 15� where the chiral symmetry
breaking occurs, one is in the region of a conformal fixed
point. In this region the scale �U is roughly given by the
scale � in Ref. [9]:

 �U � MG exp
�
�

1

b��
ln
�
�� � ��MG�

��MG�

�
�

1

b��MG�

�
;

(8)

where b � �11N � 2Nf�=6�. Thus for N � 3, the region
of the conformal fixed point is 16:5>Nf > 11:9. To get an
estimate we setMG � 1	 1016 GeV, ��MG� ’ 0:04, N �
3, and Nf � 12 and find an infrared fixed point at �� �
0:75 which gives �U � 10�11 GeV. This is an explicit
demonstration that an IR fixed point can occur with �U

very small, which is of interest in our analysis.
The modification of gravity discussed here differs from

the modification induced by extra dimensions in several
aspects [10]. First, in extra dimension Arkani-Hamed–
Dimopoulos–Dvali models [10] the corrections to the po-
tential from extra dimensions falls off exponentially at
large distances r=R > 1, where R is a compactification
length scale, while at short r=R
 1, the r dependence
has the form 1=rn�1 where n is an integer. This is to be
contrasted with Eq. (7) where the correction from ungrav-
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FIG. 1. Left side: allowed region (below curve) for RG
[Eq. (7)] for a region of dU. Right side: allowed region in M� �
�U parameter space (above curves) for various values of dU.
The seeming confluence of the three lines at a single point is not
exact.
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ity has the r dependence of the form 1=r2dU�1 both at short
as well as at large distances, and further dU can take on
noninteger values. Further, for the case of extra dimensions
the constraint that the physics of the solar system not be
modified eliminates n � 1 [10], and one has modifications
of the Newtonian potential for n � 2 of the form 1=r3. For
the case of the warped extra dimension model [11–13] the
correction to the gravitational potential can interpolate
between n � 1 and n � 2 for the case with small warping
[13], i.e., between the form 1=r2 and 1=r3. However, both
for the warped and the unwarped dimension case the
analytic form of the correction to the potential is signifi-
cantly different from the one in ungravity. Thus it should
be feasible to distinguish between extra dimension models
including models with warped dimensions from the un-
gravity correction to the gravitational potential.

We note that purely kinematical corrections to the
Newtonian potential have been computed in general rela-
tivity [14]. The sign of this correction as well as its r
dependence differs from the one computed here. Further,
the effective RG in this correction is RGR � G�m1 �
m2�=c2 and is of the size of the Planck length or smaller.
Thus in the context of submillimeter experiments these
corrections are negligible. Finally, it is interesting to note
that renormalization group analyses of quantum gravity in
4 and higher dimensions [15] show that the graviton propa-
gator near an ultraviolet fixed point scales as G�p� �
1=p2�1��=2� where � � 4�D near the fixed point with
D the number of space-time dimensions. This propagator
has a resemblance to the one that appears in Eq. (4). Of
course the typical length scale in quantum gravity is the
Planck length while the length scale in ungravity can lie in
the submillimeter region and be accessible to experiment.

The interaction operator ��
���
g
p
T�;�OU=�dU�1

U can also
play a role in high energy scattering, and its domain of
validity is also constrained from that consideration.
Consider the process f �f ! scalar unparticle (f is a fer-
mion), which would give a Feynman amplitude M �

m �u�p1�v�p2�=M��
dU�1
U , where m is the mass of the fer-

mion and p1; p2 are the incident momenta. Using the
notation and phase space calculation of [2], we find a cross
section

 ��f �f !U� �
1

4s

�
m
M�

�
2
� ���
s
p

�U

�
2dU�2

Ad: (9)

(Restriction to the inclusive reaction enables us to probe
dimensions dU > 2 without encountering the pole term
sin��dU� [2].) Since the annihilation to the unparticle
proceeds through a single partial wave (s wave), the cross
section is bounded by unitarity, �< 16�=s. From Eqs. (5)
and (9) this gives an upper bound on the energy for the
compatibility of the unparticle effective Lagrangian with
unitarity [16]:

 

���
s
p

<
1

R�

� ���������
64�
Ad

s
Mpl

m

�
1=dU�1

; (10)

where we have expressed the unitarity constraint in terms
of the quantity R� � �1=�U��MPl=M��1=dU�1 proportional
to the quantity RG defined in Eq. (7). The present upper
bound on RG (see Fig. 1) can be rewritten in terms of R�:
for the region of interest 2< dU < 3, a convenient pa-
rametrization Rmax

� ’ �0:5� 1:75�dU � 2�� 	
1012 GeV�1 will suffice.

If the exchange of the scalar unparticle is to be consis-
tent with the present Newton’s law experiments, yet have a
chance of showing up in future experiments, R� must lie
below Rmax

� but above (say) 0:1Rmax
� . Inserting this in (10),

we obtain the following result: for the worst-case scenario,
with the fermion being the top quark, unitarity is not
violated up to 1.2 TeV for 2< dU < 2:3. (Above this
energy, rescattering corrections are significant.) For the
other fermions, of course, the range of validity is larger.
Even if we require compatibility with perturbative QCD
for the light quarks (including the b-quark), which is a
tighter constraint, it allows 2< dU < 2:2 for

��
�

p
s�max ’

1:2 TeV. There are similar bounds if T�� is saturated with
the gluon trace anomaly. To sum up, we can maintain
compatibility of scale invariance with both high and low
energy constraints and simultaneously not rule out seeing
corrections to Newton’s law in the next generation of
gravitational experiments.

Corrections to Coulomb’s law can also be similarly
computed if one assumes couplings of a vector unparticle
operator OU

� to the conserved em current J� with an

interaction of type �e�=�du�1
U �J�OU

� , where dU � 2. An
analysis similar to the above gives the following modified
Coulomb potential:
 

VC�r� �
Ke1e2

r

�
1�

�
RC
r

�
2dU�2

�
;

RC �
1

��U

�
je�j
jej

�
1=dU�1

	

�
2

�

��dU �
1
2���dU �

1
2�

��2dU�

�
1=2dU�2

:

(11)

Coulomb’s law is not tested beyond the Fermi scale.
Setting RC < 10�13 cm, dU � 2, and keeping �U �
10�11 GeV, one finds the constraint e�=e < 10�11. Thus
a sensitive probe could unravel the effects of unparticle
exchange to Coulomb’s law below such scales.

In summary, we have investigated the implications of a
scenario where conformal invariance of the hidden sector
strictly holds down to very low energies. This requires
constraining the dimensionality of the scalar unparticle
operators which might couple to the Higgs field so that
dU > 2 in order not to spoil the conformal invariance of
the hidden sector. Under the assumption that a traceless
rank two unparticle operator can couple to the stress tensor,
we have computed corrections to the inverse square law
and find scale invariant power law corrections which can
be discriminated from similar corrections from extra di-
mension models. We also find the corrections from the
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exchange of a scalar operator (with dU > 2) which couples
to the trace of the stress tensor. These corrections are
testable in future experiments on the submillimeter probes
of gravity. We note in passing that the analysis of spin 2
operators in the context of collider phenomenology is
discussed in [17]. Corrections to Coulomb’s law from the
exchange of vector unparticle operators were also
computed.

Finally, we remark that the fractional modifications of
the inverse square law was studied by Dvali [18] and was
seen to lead to strong coupling effects. Dvali’s discussion
was premised on infrared modifications of gravity which
dominate the Einsteinian term at a scale r� rc which
leads to the strong coupling referred to above. However,
in our case, the modification of gravity at large scales does
not dominate the Einsteinian term. In momentum space,
the conformal propagator goes like P�2d�4�, which for d >
1 is suppressed relative to the Einstein case, P��2�, while
the propagator considered in the Dvali analysis behaves as
P��2��; ��< 1�, which indeed dominates the Einsteinian
term. Thus our setup escapes the strong coupling effect
encountered in [18].

We end with a note of caution, in that a fully consistent
formulation of unparticles does not exist and this feature
carries over also to ungravity. Nonetheless, if unparticle
stuff exists, and one assumes strict conformal invariance of
the hidden sector, a new gravitational size force, ungravity,
could generate power law modification of gravity, and the
new effects fall within the range of future submillimeter
tests of gravity. Further, it is possible to distinguish be-
tween modifications of corrections due to extra dimensions
and corrections from ungravity effects. It should be inter-
esting to build explicit models of the hidden sector where
strict conformal invariance is realized while also realizing
couplings via a connector sector to the standard model
fields of the type discussed here. The strict conformal
invariance of the hidden sector required by our model is
also suggestive of an AdS5 connection. However, such
issues lie outside the scope of this work.
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Hagedorn, Daniel Litim, and Y. Nakayama for helpful
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Note added.—Recently, another work [19] in a similar
spirit examined the correction to the long range forces from
couplings to the baryon and lepton number currents and
found that such corrections are significantly constrained by
data.
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