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We investigate the relation between the scaling of block entropies and the efficient simulability by
matrix product states (MPSs) and clarify the connection both for von Neumann and Rényi entropies. Most
notably, even states obeying a strict area law for the von Neumann entropy are not necessarily
approximable by MPSs. We apply these results to illustrate that quantum computers might outperform
classical computers in simulating the time evolution of quantum systems, even for completely transla-
tional invariant systems subject to a time-independent Hamiltonian.
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Understanding the behavior of quantum many-body sys-
tems is a central problem in physics. Recently, matrix
product states (MPSs) have received much interest as a
variational ansatz for the simulation of correlated one-
dimensional systems. They have proven particularly
powerful in approximating the ground states of local
Hamiltonians, as used in the density matrix renormaliza-
tion group method [1,2], but have also been applied, e.g., to
simulate the time evolution of slightly entangled quantum
systems [3]. Despite considerable progress [4], it is still not
fully understood which property exactly a state has to fulfil
to be well approximated by MPSs. This knowledge is not
only of practical interest, but could also tell us how to
extend the MPS ansatz to, e.g., higher dimensional
systems.

It is generally believed that the relevant criterion for
efficient approximability by MPSs is that the states under
consideration obey an area law; i.e., the von Neumann
entropy of a block is bounded. Although indeed both
ground states of local Hamiltonians and MPSs obey an
area law, there are reasons to doubt this immediate con-
nection: First, the von Neumann entropy is an asymptotic
concept, quantifying what happens when dealing with a
large number of copies of a state. Conversely, it has been
shown recently that a rigorous connection can be estab-
lished by looking at Rényi entropies instead [5].
Unfortunately, the argument used breaks down as the von
Neumann entropy is approached. Finally, the continuity
inequality for the von Neumann entropy carries a size-
dependent constant, and thus states which are close to
each other need not be close in entropy [6].

In this Letter, we explore the connection between en-
tropy scaling and approximability by MPSs. The results are
summarized in Fig. 1: An at most logarithmic scaling of
Rényi entropies S�, �< 1, implies approximability by
MPSs. On the other side, a faster than logarithmic increase
of S�, �> 1, rules out efficient approximability by MPSs,
as does linear growth of the von Neumann entropy. For all
other cases, the scaling of the block entropy does not allow
for conclusions about approximability. In particular, this

holds for the case of constant von Neumann entropy, which
demonstrates that the reason why MPSs describe ground
states well is not simply that those states obey an area law.

Finally, we apply our results to illustrate that quantum
computers might outperform classical computers in simu-
lating time evolutions. It is long known that quantum
computers can simulate the behavior of quantum systems
[7]. However, this does not automatically imply that they
will outperform classical computers, as, e.g., ground states
of gapped quantum systems appear classically efficiently
approximable [4,8]. On the other hand, it is known that
time evolution even of one-dimensional systems under a
translational invariant Hamiltonian can implement quan-
tum computations if either translational invariance is bro-
ken by the initial, boundary, or final conditions, or the
Hamiltonian is time dependent [9], and is thus hard to
simulate. We extend these results by showing that even
the simplest case, the evolution of a translational invariant
spin 1

2 system with translational invariant initial conditions
under a time-independent Hamiltonian, cannot be simu-
lated efficiently using MPSs; this provides evidence that
quantum computers might outperform classical computers
in simulating these systems.

Let us first introduce the relevant quantities and nota-
tion. We want to obtain approximations which reproduce
accurately not only the local properties such as energy, but
also the nonlocal ones such as correlations. This is ensured
by bounding the error made between two states j i and j�i

S1S

log L Lκ(κ<1)

Sα  >1

Sα  <1

const LSα~

approximable

inapproximableu n d e t e r m
 i n e d

FIG. 1 (color online). Relation between scaling of block Rényi
entropies and approximability by MPSs. In the ‘‘undetermined’’
region, nothing can be said about approximability just from
looking at the scaling.
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for an arbitrary observable O,

 jtr� O� � tr��O�j � kOkopk ��ktr;

where throughout the Letter,  � j ih j, etc., denotes the
corresponding density operator. We focus on nonextensive
observables (see Ref. [10] for extensive observables);
therefore without loss of generality kOkop � 1. It follows
that by imposing

 k ��ktr � �; (1)

we bound the error made in any observable by �.
For some of the proofs it will be more convenient to

consider the two-norm distance kj i � j�ik2 or the fidel-
ity jh�j ij=kj�ik2kj ik2 � : cos���. Fortunately, these
measures all turn out to be equivalent: Since the best
approximating MPS will generally not be normalized, it
is appropriate to consider the optimized quantities, and one
finds that T��; � :� inf�k � ��ktr=k ktr � sin�2��
and V��; � :� inf�kj i � �j�ik2=kj ik2 � sin��� for
0 � � � �

4 .
We now introduce MPSs [3,11,12]. Consider a chain of

N d-level systems with the corresponding Hilbert space

 H N :� �Cd�	N:

We call j�Di 2H N a MPS with bond dimension D (or,
briefly, a D-MPS) if it can be written as

 j�Di �
Xd

i1;...;iN�1

A�1�i1 A
�2�
i2

 
 
A�N�iN

ji1; i2; . . . ; iNi (2)

with A�k�i D�Dmatrices for 2 � k � N � 1, and A�1�i and
A�N�i row and column vectors of lengthD, respectively [13].

Given a family �j Ni� � �j Ni�N2N�N of states,
j Ni 2H N , we say that it can be approximated efficiently
by MPSs if for every � > 0, there exists a sequence j�N;Di
of MPSs with D � D�N� � O�poly��N�� such that k N �
�N;Dktr � �. On the contrary, if there is some � > 0 such
that no sequence of MPSs with polynomial bond dimen-
sion can approximate j i up to �, we say that �j Ni� cannot
be approximated efficiently by MPSs. For brevity, we
sometimes drop the word ‘‘efficiently.’’

We will measure entropies using the Rényi entropies

 S���� �
log tr��

1� �
; 0 � � � 1;

which are a generalization of the von Neumann entropy
S��� � �tr�� log��. In particular, lim�!1S���� � S���.
Note that all logs are to the basis 2.

We aim to relate approximability by MPSs to the scaling
of block entropies. To this end, we first show that the error
made in approximating some state by a D-MPS is deter-
mined by the error made when truncating the Schmidt
spectrum of its bipartitions after D values. Therefore, let
j i 2H N , �k � trk
1;...;Nj ih j, and let ��k�1 � ��k�2 �


 
 
 � ��k�
dk

be the ordered spectrum of �k. Then, define

the truncation error

 �k�D� :�
Xkd

i�D
1

��k�i :

Let us now relate the truncation error to approximability
by MPSs. The intuition is that the best an MPS with bond
dimension D (i.e., Schmidt rank D in any bipartition) can
do is to preserve the D largest eigenvalues, resulting in an
error of �k�D� for the cut at k (which can, but need not,
accumulate). On the one side, it has been shown in [5] that
for a state j i 2H N , there always exists an MPS j�Di
with bond dimension D such that

 kj i � j�Dik2 � 2
XN�1

k�1

�k�D�: (3)

On the other hand, any D-MPS j�Di satisfies

 k ��Dktr � �k�D� 8 k; (4)

since with �k � tr1;...;k and 	D;k � tr1;...;k�D,

 k ��Dktr � k�k � 	D;kktr � �k�D�:

Here, we have used (i) the contractivity of the partial trace,
(ii) for fixed spectra, the trace norm distance is extremal for
commuting operators [14], and (iii) rank	D;k � D.

We start the discussion of Fig. 1 by proving the cases for
which conclusive statements can be made. In the follow-
ing, �LN will denote any L-particle reduced block of a state
j Ni 2H N . The case of at most logarithmically growing
Rényi entropy with �< 1 was discussed in [5], where it
was shown that it implies approximability. More formally,
if for a family of states �j Ni� there exist c, c0 > 0 and 0 �
�< 1 such that S���LN� � c log�N� 
 c0 for all reduced
blocks �LN , then it can be approximated efficiently by
MPSs.

Let us now show that a linearly growing von Neumann
entropy implies inapproximability. Formally, if for a fam-
ily �j Ni�, S��LN� � cL holds for some c > 0, L � L�N� �

N, 
> 0, and some reduced blocks �LN , then it cannot be
approximated efficiently by MPSs.

To prove this, we use Fannes’s inequality in its improved
version by Audenaert [6]: For density operators �;	 on a
K-dimensional Hilbert space, jS��� � S�	�j � T log�K �
1� 
H�T; 1� T�, where 2T � k�� 	ktr � �, and
H�T; 1� T� � 1 is the binary entropy. Let �j�N;Di� be a
sequence of MPSs approximating �j Ni�, and �LN , 	LN;D the
corresponding reduces states for which S��LN� � cL. Then,

 jS��LN� � S�	
L
N;D�j �

1
2�L logd
 1;

and thus, for L � 
N,

 logD�N� � S�	LN;D� � S��LN� �
1

2
�L logd� 1

� 

�
c�

1

2
� logd

�
N � 1; (5)

i.e., the bond dimension grows exponentially in N as soon
as the error � < 2c= logd, which completes the proof.
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In the following, we show that a faster than logarithmic
increase of any Rényi entropy with �> 1 also implies
inapproximability; i.e., if for a family �j Ni�, there exist
�> 1 and � > 0 such that S���LN� � cL� for some c > 0,
L � L�N� � 
N, and some reduced blocks �LN, then it
cannot be approximated efficiently by MPSs.

This is proven by lower bounding the truncation error
� � ��D� of a block �LN for given S���� (�> 1) and then
applying (4). This, however, is the same as maximizing the
entropy while keeping � fixed. Since both the entropy and
� only depend on the spectrum, the problem reduces to a
classical one. It is easy to see that the probability distribu-
tion

 p1; . . . ; pD �
1� �
D

; pD
1; . . . ; p2L �
�

2L �D

is majorized by all ordered probability distributions �qi�
which satisfy qD
1 
 . . .
 q2N � �, and since Rényi en-
tropies are Schur concave functions, it has maximal en-
tropy [14]. Therefore, we obtain the inequality

 S���LN� �
�1

�� 1
log

�
�1� ���

D��1 

��

�2L �D���1

�

�
�1

�� 1
log

�
�1� ���

D��1

�

� logD�
�

�� 1
log�1� ��:

Since from (4) the total error is � � �, we find

 logD � S���
L
N� 


�
�� 1

j log�1� ��j;

and from S���
L
N� � cL� � c
�N�, we infer that D has to

grow exponentially for any �.
We now turn toward the undetermined region in Fig. 1,

where we provide examples for both approximability and
inapproximability. This task is greatly simplified by the
fact that approximability examples extend to the top and
left in Fig. 1, while inapproximability extends to the right
and bottom. This holds as approximability for a given
scaling implies the same for more moderate scalings (and
conversely for inapproximability), and since S���� de-
creases monotonically in �.

The aim of this Letter is to clarify the relation between
entropy scaling laws and the approximability by MPS;
therefore, our examples are not constructed to be ground
states. Yet, all of them form uniform families of states; i.e.,
they can be generated by a uniform family of time-
dependent Hamiltonians. The existence of time-
independent realizations is plausible, as the central ingre-
dient of the examples is properly distributed entangled
pairs. These could be represented by pairs of localized
excitations which are prepared locally and then propagated
by a time-independent Hamiltonian.

All of the examples can be chosen to be translational
invariant, with the only possible exception of the inapprox-
imability example for constant von Neumann entropy. The
question whether any translational invariant state with

bounded von Neumann entropy can be approximated effi-
ciently by MPSs thus remains open.

The examples can be grouped into two classes. The first
is based on states of the type

 j 2Ni �
����������������
1� pN

p
j2i	2N 


�������
pN
2N

r X
x2f0;1gN

jxijxi: (6)

By choosing pN � 1=N, we obtain an example of a state
with linearly growing Rényi entropies for all �< 1 which
can be approximated by MPSs, as

 kj 2Ni �
����������������
1� pN

p
j2i	2Nk2 �

�������
pN
p

! 0:

On the other hand, for L � N,

 �L2N � �1� pN�j2ih2j
	L 


pN
2L

X
y2f0;1gL

jyihyj;

and therefore

 S���L2N� �
1

1� �
log��1� pN�� 
 2�1���Lp�N�

� L�
�

1� �
logN: (8)

Note that the unfavorable scaling of c� :� �
1�� for �! 1

can be compensated by, e.g., choosing pN � N�1=c� .
The next example provides states with algebraically (but

sublinearly) growing von Neumann entropy which can be
approximated efficiently by MPSs. Therefore, fix 0< �<
1 and � > 0, and set pN � N���1��� in (6). As in the
previous example, pN ! 0 implies approximability, and

 S��L2N� � H�pN; 1� pN� 
 pN log�2L� � L=N��1���;

which implies S��L2N� � L� for L � N�.
We now construct a state which obeys a strict area law

for the von Neumann entropy but yet cannot be approxi-
mated by MPSs. Therefore, set M � 2N3 and define
j�Mi � j 2Ni

	N2
with j 2Ni from (6), where pN � 1=N.

Then, S��LM� is at most twice the maximum entropy of a cut
through j 2Ni, and thus

 S��LM� � 2�H�pN; 1� pN� 
 pNN� � 4:

To prove hardness of approximation, observe that for a
given D, the best D-MPS approximation to j 2Ni

	N2
also

carries this product structure, j�Di
	N2

[15]. From the
multiplicativity of the fidelity and the relations follow-
ing Eq. (1) one infers T��	K;  	K� �

���������
K=8

p
T��; � for

T��; �2 � 2=K. Second, from the truncation error �N�D�
for j 2Ni, T��D;  2N� � �2

N � �D� 1��pN=2N for any
D-MPS j�Di. Together, this shows that D � 2N�1�
8T��D; �M�� 
 1 which is exponential in the system size
M � 2N3.

It is unclear how to make this example translational
invariant. However, for the adjacent cases in Fig. 1, those
examples exist: For S� logL, take the preceding example
and make it translational invariant by adding a tagging
system j10 . . . 0i	N

2
and superposing all translations. The

resulting state is hard to approximate as the translational
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invariance can be broken by local projections on the tags,
and since the reduced state �LN is the translational invariant
mixture of the original, tagged reduced states, the entropy
is increased by at most logL. For the case S� � const:, �>
1, the state (6) with constant pN does the job.

The last two examples are of a different type: We con-
sider N spins on a ring and equidistantly distribute 

maximally entangled pairs between opposite sites (i.e., k
and k
 N=2), while initializing all remaining qubits to j0i.
The first example, obtained for 
 � logN, provides a state
with S1 � logL which is approximable. It is clearly an
MPS with D � 2logN � N, and for any c > 0, S1��LN� �
bLN logNc � c logL� 1 for L � cN. It can be made trans-
lational invariant by superposing all translates of the state:
On the one hand, this increases the bond dimension by at
most a factor of N [12], while on the other hand, the largest
eigenvalue of a block of length N= logN is 1

2 ; i.e., the logL
lower bound on the S1 entropy remains unchanged.

The second example illustrates that for any � > 0, there
is a state with S0 � N

� which cannot be approximated by
MPSs. Therefore, choose 
 � N�. Then, S0��

L
N� �

N�L=N 
 1 � 2L�, while inapproximability follows
from the superlogarithmic number of maximally entangled
pairs. Translational invariance is achieved by taking the
superposition of all translations for �0 < �. The spectrum
of a block of length N=N�0 is broadened to �12 ;

N�0

2N ; . . . ; N
�0

2N �:
this clearly increases the truncation error, and the entropy
scaling gets a log correction S0��LN� � 2L�

0
�1
 �1�

�0� logL� which is bounded by 4L� for properly chosen
�0 and L.

Let us now prove the hardness of simulating time evo-
lutions with MPS-based approaches, using the results ob-
tained (cf. also [16]). To this end, take a spin chain with all
spins up and apply a critical Ising Hamiltonian with peri-
odic boundary conditions. There is good evidence [17] that
in this case the block entropy of any block grows linearly in
time, and indeed, a lower bound S��LN�t�� � 4t=3�

O�logt� for t � eL=4 can be rigorously proven [18]. By
plugging this into (5) and setting L � 4t=e, one finds that
for an error � < 2e=3� � 0:58, the required bond dimen-
sion, and thus the effort to simulate the time evolution
using MPSs, grows exponentially in time.

In this Letter, we have explored the relation between the
scaling of block entropies and approximability by MPS.
More refined criteria might be obtained by considering
more involved figures of merit. For instance, the approx-
imability proof of [5] can be adapted to smooth Rényi
entropies S����� � minfS��	�:k�� 	ktr � �g [19].
Then, the existence of �< 1, � > 0, and c > 0 such that
S1=N1
�

� ��LN� � c logN implies approximability [20].
Indeed, the state (6) with pN � 1=N2 has linearly growing
Rényi entropies, while the smooth Rényi entropies are
constant and thus imply approximability.
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