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We propose and analyze a general mechanism of disorder-induced order in two-component Bose-
Einstein condensates, analogous to corresponding effects established for XY spin models. We show that a
random Raman coupling induces a relative phase of �=2 between the two BECs and that the effect is
robust. We demonstrate it in one, two, and three dimensions at T � 0 and present evidence that it persists
at small T > 0. Applications to phase control in ultracold spinor condensates are discussed.
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Degenerate quantum gases offer unprecedented control
tools [1], opening fascinating possibilities, e.g., investiga-
tions of quantum disordered systems [2]. Current experi-
mental [3–5] and theoretical [5–8] works are mainly
devoted to studies of the interplay between disorder and
nonlinearity in Bose-Einstein condensates (BEC) in a quest
for traces of Anderson localization. In the regime of strong
correlations, evidence for the Bose glass phase has been
reported [9], and even more exotic quantum phases have
been proposed [2,10].

Weak disorder can have strong effects also in classical
systems. For instance, a general mechanism of random-
field-induced order (RFIO) has been proposed recently
[11,12]. It is responsible for ordering in graphene quantum
Hall ferromagnets [13], 3He-A in aerogel and amorphous
ferromagnets [14], as well as for inducing superfluidity in
hardcore bosonic systems [15]. This effect is best under-
stood in classical ferromagnetic XY models in the presence
of uniaxial random magnetic fields. For the 2D square
lattice, the Hamiltonian reads

 H � �
X
ji�jj�1

�i � �j �
X
i

hi � �i; (1)

where the spins are unit 2D vectors in the XY plane: �i �
�cos�i; sin�i� at site i 2 Z2. When h � 0 the system does
not magnetize as a consequence of the Mermin-Wagner-
Hohenberg (MWH) theorem [16]. In contrast, a weak
uniaxial random field hi breaks the continuous U�1� sym-
metry. Then, the MWH theorem does not apply and the
system spontaneously magnetizes with a nonzero compo-
nent of the magnetization perpendicular to the random
field. This has been proven at zero temperature and strong
arguments have been given that the effect persists at small
temperatures [11]. Hamiltonian (1) can be realized with

ultracold atoms in optical lattices, but the effect is rather
weak [11].

In this Letter, we propose an analogue of the RFIO effect
using two BECs trapped in harmonic potentials and
coupled via a real-valued random Raman field. We show
that the mean-field Hamiltonian of the two-component
BEC is analogous to the XY spin Hamiltonian (1), with
the Raman coupling playing the same role as the magnetic
field in Eq. (1), and the relative phase between the BECs
corresponding to the spin angle �i. Then, the RFIO effect
shows up in the form of a relative phase between the BECs
fixed at a value of ��=2. The finite-size two-component
BEC system is continuous and formally equivalent to the
discrete spin system (1) on an infinite lattice. We find that
even in low dimensions, the RFIO effect is much more
pronounced and robust in coupled trapped BECs than it is
in uniform lattice spin models. Note that trapped (finite-
size) BECs at sufficiently small T show true long range
order also in one and two dimensions as phase fluctuations
take place on a scale larger than the size of the systems
[17]. We demonstrate the effect in one, two, and three
dimensions at T � 0 and present strong evidence that it
persists for small T > 0.

Interestingly, the RFIO effect is quite general. For in-
stance, consider the two-spin lattice Hamiltonian:

 H � �
X
ji�jj�1

��i � �j � �i � �j� �
X
i

�i�i � �i; (2)

where �i are independent real-valued random couplings
with (identical) symmetric distributions. In this system, it
can be proven rigorously that there is no first order phase
transition with the order parameter �i � �i in dimensions
d 	 4 [18]. More precisely, in every infinite-dimensional
Gibbs state (phase), the disorder average of the thermal
mean h�i � �ii takes the same value. By symmetry, this
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value has to be zero, implying that the average cosine of the
angle between �i and �i is zero. At T � 0, these results
also apply [18] and are consistent, by analogy, with the
relative phase �=2 of two randomly coupled BECs, dis-
cussed below.

We consider a trapped two-component Bose gas with
repulsive interactions and assume that the two components
consist of the same atomic species in two different internal
states, coupled via a position-dependent (random, quasi-
random, or just oscillating) real-valued Raman field ��r�
of mean zero (

R
�dr � 0). The typical amplitude and

spatial variation scale of ��r� are denoted by �R and
�R. At sufficiently small T, the trapped gases form BECs
which can be represented by the classical fields  1;2�r� in
the mean-field approximation. The energy functional of the
system then reads
 

E �
Z
dr
�@2=2m�jr 1j

2 � V�r�j 1j
2 � �g1=2�j 1j

4

� �@2=2m�jr 2j
2 � V�r�j 2j

2 � �g2=2�j 2j
4

� g12j 1j
2j 2j

2 � �@��r�=2�� �1 2 �  �2 1��; (3)

where V�r� is the confining potential, and gi � 4�@2ai=m
and g12 � 4�@2a12=m are the intra- and interstate cou-
pling constants, with ai and a12 the scattering lengths and
m the atomic mass. The last term in Eq. (3) represents the
Raman coupling which can change the internal state of the
atoms.

The ground state of the coupled two-component BEC
system is obtained by minimizing E as a function of the
fields  1 and  2 under the constraint of a fixed total
number of atoms N �

R
dr�j 1j

2 � j 2j
2�. This leads to

a set of two coupled Gross-Pitaevskii equations (GPE):

 � i � 
�@
2r2=2m� V � gij ij

2 � g12j �ij
2� i

� �@�=2� �i; (4)

with � the chemical potential and �i � 2�1� for i � 1�2�.
At equilibrium, for �R � 0 and g1, g2 > g12, the BECs

are miscible [19]. Their phases �i are uniform, arbitrary
and independent. Now, a weak Raman coupling (@j�Rj 
�) does not noticeably affect the densities. However, arbi-
trarily small ��r� breaks the continuous U�1� symmetry
with respect to the relative phase of the BECs and, follow-
ing the results of Refs. [11,12,18], the relative phase can be
expected to be fixed. To make this clearer, we neglect the
changes of the densities when the weak Raman coupling is
turned on and analyze the phases. For simplicity we sup-
pose g1 � g2 and ��r� � �1�r� � �2�r�. The substitution
 i � ei�i�r�

���������
��r�

p
in the energy functional (3) leads to E �

E0 ��E where E0 is the energy for �R � 0 and
 

�E �
Z
dr��r�

�
@

2

4m
�r��2 � @��r� cos�

�

�
Z
dr��r�

@
2

4m
�r��2; (5)

where � � �1 � �2 and � � �1 � �2. Minimizing �E
implies � � const; hence, the second line in Eq. (5) van-
ishes and the only remaining dynamical variable in the
model is the relative phase � between the BECs. Note that
if �1 � �2 the variables � and � are coupled and one
cannot consider them independent (the �1 � �2 case is
analyzed in the sequel). Equation (5) is equivalent to the
classical field description of the spin model (1) in the
continuous limit, where the relative phase ��r� represents
the spin angle and the Raman coupling ��r� plays the role
of the magnetic field. Thus, we expect RFIO [11] to show
up in the form cos� ’ 0 for weak random ��r�.

Let us examine Eq. (5) in more detail. It represents a
competition between the kinetic term which is minimal for
uniform � and the potential term which is minimal when
the sign of cos� is opposite to that of ��r�. For @�R �
@

2=2m�2
R, the potential term dominates and � will vary

strongly on a length scale of the order of �R. In contrast, if
@�R  @

2=2m�2
R the kinetic term is important and forbids

large modulations of � on scales of �R. The Euler-
Lagrange equation of the functional (5) is

 r
��r�r�� �
2m
@
��r���r� sin� � 0: (6)

For the homogeneous case (� � const) and for slowly
varying densities (neglecting the termr�), assuming small
variations of the relative phase, ��r� � �0 � ���r� with
j��j  �, the solution of Eq. (6) reads

 ��̂�k� ’ �2m=@�
�̂�k�=jkj2� sin�0 (7)

in Fourier space. Inserting Eq. (7) into Eq. (5), we find

 �E ’ �m�
Z
dk�j�̂�k�j2=jkj2�sin2�0: (8)

The energy is thus minimal for �0 � ��=2, i.e., cos�0 �
0. This indicates RFIO in the two-component BEC system
owing to the breaking of the continuous U�1� symmetry of
the coupled GPEs. For a random Raman coupling, even if
the resulting fluctuations of � are not small, the average
phase is locked at �0 � ��=2. Note that if ��r� is a
solution of Eq. (6), so is ���r�. This follows from the
fact that for any solution ( 1,  2) of the GPEs (4), ( �1,  �2)
is also a solution with the same chemical potential. The
sign of �0 thus depends on the realization of the BECs and
is determined by spontaneous breaking of the �$ ��
symmetry.

Let us turn to numerics starting with g1 � g2. For
homogeneous (� � const) gases, we solve Eq. (6).
Figure 1 shows an example for a 1D two-component
BEC, where ��x� is a quasirandom function chosen as a
sum of two sine functions with incommensurate spatial
periods. The dynamical system (6) is not integrable. It
turns out that the solution we are interested in corresponds
to a hyperbolic periodic orbit surrounded by a considerable
chaotic sea. Figure 1 confirms that ��x� oscillates around
�0 ’ ��=2. The oscillations of ��x� are weak and follow
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the prediction (7), which in one dimension, after inverse
Fourier transform, corresponds to the double integral of
��x�.

For trapped gases and for g1 � g2 we directly solve the
coupled GPEs (4). Figure 2 shows the results for a 1D two-

component BEC in the Thomas-Fermi regime confined in a
harmonic trap with a random ��x�. A typical realization is
shown in Fig. 2(a). For each realization of ��x�, the
resulting relative phase � can change significantly but
only on a scale much larger than �R because @�R 
@

2=2m�2
R, as shown in Fig. 2(b). However, averaging

over many realizations of the random Raman coupling
and keeping only those with

R
��x�dx > 0 (resp. <0), we

obtain h��x�i � �=2 (��=2), with the standard deviation
about 0:3� as shown in Fig. 2(c).

The dynamical stability of the solutions of the GPEs (4)
found in the 1D trapped geometry can be tested by means
of the Bogoliubov–de Gennes (BdG) theory which allows
also to estimate the quantum depletion of the BECs [20].
The BdG analysis shows that the solutions of the GPEs (4)
are indeed stable and that the BdG spectrum is not signifi-
cantly affected by the Raman coupling. It implies that
turning on the Raman field does not change the thermody-
namical properties of the system, and the RFIO effect
should persist for sufficiently low T > 0. Note that the
GPEs (4) possess also a solution with both components
real. However, this solution is dynamically unstable. In
fact, there is a BdG mode associated with an imaginary
eigenvalue and the corresponding BECs phases (under a
small perturbation) will evolve exponentially in time. In
addition, the BdG analysis shows that the quantum deple-
tion is about 1% and can therefore be neglected.

Calculations in two and three dimensions—whose de-
tailed results will be published soon—show essentially the
same disorder-induced ordering effect in all dimensions.
For example, Fig. 3 shows the result for two coupled
3D BECs in a spherically symmetric harmonic trap.
Here, the Raman coupling is a sum of quasirandom func-
tions similar to that used for Fig. 1 in each spatial direction
and with @�R ’ 10�2�. The density modulations are
found to be negligible. However, even for this low value
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FIG. 2. RFIO effect in very elongated (effectively 1D) trapped
BECs. The data correspond to 87Rb atoms in two different
internal states in an anisotropic harmonic trap with frequencies
!x � 2�� 10 Hz and !? � 2�� 1:8 kHz. The total number
of atoms is N � 104 and the scattering lengths are a1 �
5:77 nm, a2 � 6:13 nm and a12 � 5:53 nm. Panel (a) Single
realization of the random Raman coupling @�=� for �R �
10�2LTF and @�R ’ 3� 10�3�. Panel (b) Relative phase �
corresponding to ��x� shown in panel (a). Panel (c) � averaged
over many realizations of ��x� (solid line) and the averaged
value � standard deviation (dashed lines). In panel (c) the
solutions with

R
�dx > 0 only are collected (the other class of

solutions with �! �� is not included).
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FIG. 3 (color online). RFIO effect in a 3D two-component
BEC trapped in a spherically symmetric harmonic trap
with frequency ! � 2�� 30 Hz. The total number of
atoms is N � 105, the scattering lengths are as in Fig. 2
and we use a quasirandom Raman coupling ��x; y; z� /P
u2fx;y;zg
sin�u=�R� � sin�u=�1:71�R��� with �R�4:68�m=2�

and @�R ’ 5� 10�3�. Shown is the relative phase � in the
plane z � 0 �m in units of �.
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FIG. 1 (color online). RFIO effect in a 1D two-component
BEC trapped in a box of length L and in a quasirandom
Raman field. Panel (a) Raman coupling function ��x� �
�100�@=2mL2�fsin�x=�R � 0:31� � sin
x=�2:44�R� � 1:88�g
with �R � 0:009 39L. Panel (b) Relative phase ��x� � �1�x� �
�2�x� obtained by solving Eq. (6) numerically (solid black line)
and comparison with Eq. (7) (dashed red line—nearly identical
to the solid black line).
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of the Raman coupling, Fig. 3 shows that the relative phase
is fixed around �0 � �=2 with small fluctuations. Other
calculations confirm that the sign of �0 is random but with
j�0j � �=2 for all realizations of ��r� and that the weaker
the Raman coupling, the smaller the modulations of ��r�
around �0. This shows once again the enormous robustness
of RFIO in two-component BECs.

In summary, we have shown that RFIO occurs in a
system of two BECs coupled via a real-valued random
Raman field. It has been demonstrated in one, two,
and three dimensions for homogeneous or trapped BECs.
The signature of RFIO is a fixed relative phase between
the BECs around �0 � ��=2. For quasirandom Raman
coupling, the fluctuations can be very small (0:05� for
the parameters used in Fig. 1). For completely random
Raman coupling the fluctuations can be larger (about
0:3� for the parameters used in Fig. 2). Interestingly, the
two-component BEC system is continuous and RFIO is
stronger and more robust than in lattice spin Hamiltonians
of realistic sizes [11]. RFIO can thus be obtained in current
experiments with two-component BECs [21,22] and ob-
served using matterwave interferometry techniques [22].

Apart from its fundamental importance, RFIO can have
applications for engineering and manipulations of quantum
states by providing a simple and robust method to control
phases in ultracold gases. We find particularly interest-
ing applications of phase control in spinor BECs and,
more generally, in ultracold spinor gases [1]. For example,
in a ferromagnetic spinor BEC with F � 1 as in 87Rb,
the wave function is � / 
e�i�cos2��=2�;

���
2
p

sin��=2��
cos��=2�; e�i�cos2��=2��, the components correspond to
mF � 1 0, �1 and the direction of magnetization is ~n �
�sin� cos�; sin� sin�; cos��. Applying two real-valued
random Raman couplings between mF � 0 and mF �
�1, fixes � � 0 or �;, i.e., the magnetization will be in
the XZ plane. By applying two random real-valued Raman
couplings between mF � 0 and mF � 1 and between
mF � �1 and mF � 1, we force the magnetization to be
along �Z. Similar effects occur in antiferromagnetic
spinor BECs with F � 1, as 14Na. Using Raman transitions
with arbitrary phases, employing more couplings, and
higher spins F offers a variety of control tools in ultracold
spinor gases.
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