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We investigate the phase diagram of asymmetric two-component Fermi gases at zero temperature as a
function of polarization and interaction strength. The equations of state of the uniform superfluid and
normal phase are determined using quantum Monte Carlo simulations. We find three different mixed
states, where the superfluid and the normal phase coexist in equilibrium, corresponding to phase
separation between (a) the polarized superfluid and the fully polarized normal gas, (b) the polarized
superfluid and the partially polarized normal gas, and (c) the unpolarized superfluid and the partially
polarized normal gas.
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The study of a two-component Fermi gas with imbal-
anced populations is an active area of research in the field
of ultracold atoms [1]. Recent experiments, carried out on
harmonically trapped configurations, investigate superflu-
idity and Bose-Einstein condensation (BEC) of fermionic
pairs in these systems by varying the strength of interac-
tions, the temperature of the gas, and the degree of polar-
ization [2]. Evidences of phase separation between a
superfluid core and a normal external shell are reported
for systems close to the unitary limit [3] and on both sides
of the Feshbach resonance [4]. On the theoretical side, the
phase diagram of a polarized Fermi gas with tunable
interactions is the subject of a number of studies both at
zero [5,6] and at finite temperature [7]. These studies,
which refer to uniform systems and are based on a mean-
field approach, predict the existence of a normal phase for
large enough polarization on the BCS side of the crossover
and of a polarized superfluid phase on the BEC side,
separated by a region where the two phases coexist in
equilibrium. However, if interactions are not weak, the
mean-field theory fails to describe correctly the nature of
the phase separated state and to provide a reliable estimate
of the critical value of polarization where phase separation
occurs. The key ingredient, which is missing in the mean-
field description, is the proper account of interaction ef-
fects in the normal phase [8].

In this Letter we carry out a quantitative study of the
phase diagram at zero temperature along the BCS-BEC
crossover using fixed-node diffusion Monte Carlo (FN-
DMC) simulations, which have proven very accurate in
the investigation of strongly correlated ultracold Fermi
gases [1]. We determine the equation of state of the homo-
geneous normal and superfluid phase as a function of
interaction strength and population imbalance. From the
phase equilibrium conditions we identify three different
phase separated states corresponding to (a) the polarized
superfluid coexisting with the fully polarized normal gas,
(b) the polarized superfluid coexisting with the partially
polarized normal gas, and (c) the unpolarized superfluid
coexisting with the partially polarized normal gas. State (a)

and state (c) are, respectively, separated from the homoge-
neous superfluid and normal phase by a first order phase
transition, while state (a) and state (b) as well as state (b)
and state (c) are separated by second order phase
transitions.

We consider a uniform system in a volume V with a total
number of particles N � N" � N#. The number N" of spin-
up particles is kept fixed, corresponding to the average
density n" � N"=V. The interaction strength is parame-
trized by the inverse product 1=kF"a of the s-wave scatter-
ing length a and the Fermi wave vector of the spin-up
particles kF" � �6�2n"�1=3. The number N# of spin-down
particles is instead a variable of the system determining the
polarization parameter P � N"�N#

N"�N#
, which is assumed posi-

tive within the bounds 0 � P � 1. The relevant energy
scale is fixed by the Fermi energy of the spin-up particles
EF" � @

2k2
F"=2m, where m is the particle mass of both spin

components.
First, we discuss the equation of state of the four homo-

geneous phases considered in the present study: unpolar-
ized and polarized superfluid and fully and partially
polarized normal gas. Then, we analyze the equilibrium
conditions between these phases to map out the phase
diagram along the BCS-BEC crossover. We do not con-
sider the more exotic superfluid phases such as the Fulde-
Ferrel and Larkin-Ovchinnikov state which is expected to
occur on the BCS side of the resonance for small polar-
izations [9].

(i) Fully polarized normal gas (NFP).—In this phase
N# � 0. Since p-wave collisions can be neglected, the
gas is well described by the noninteracting model with
the equation of state

 ENFP
�

3

5
N"EF": (1)

(ii) Unpolarized superfluid gas (SF0).—In this phase
N" � N# � N=2. The corresponding ground-state energy
can be cast in the following form:
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 ESF0
�
N
2
�b��1=kF"a� �

�
3

5
N"EF"

�
2G�1=kF"a�: (2)

The first term, proportional to the number of pairs N=2,
corresponds to the contribution of molecules with binding
energy �b. For a zero-range interatomic potential this
energy takes the familiar expression �b � �@2=ma2. The
two-body term is a convenient parametrization of the
equation of state only on the BEC side of the crossover
(a > 0) where dimers are formed in vacuum, as entailed in
Eq. (2) by the Heaviside function: ��x� � 1 if x > 0 and
zero otherwise. The dimensionless function of the interac-
tion strength G�1=kF"a� contains instead the many-body
contributions to the equation of state. This function has
been calculated in Ref. [10] using the FN-DMC method,
and the results are shown in the inset of Fig. 1. In particular,
in the BEC regime (1=kF"a� 1) the function G takes the
form G � 5kF"add=18��1� 128�kF"add=��3=2=15

���
6
p
	

with add � 0:60a [11] and corresponds to the mean-field
and first beyond mean-field contributions to the equation of
state of composite bosons with mass 2m and density n"
interacting with a dimer-dimer scattering length add.

(iii) Partially polarized normal gas (NPP).—This phase
is characterized by the concentration x � N#=N" of the
minority spin-down particles. At small concentrations
(x
 1) the dependence on x of the ground-state energy
can be written in the form of the Landau-Pomeranchuk
Hamiltonian of weakly interacting quasiparticles [12]

 ENPP
�

3

5
N"EF"

�
1� Ax�

m
m�

x5=3 � Fx2

�
; (3)

where A,m�=m, and F depend on 1=kF"a. The quantity A is
the binding energy of a spin-down quasiparticle in the
Fermi sea of spin-up particles, and m� is its effective
mass. The term F accounts instead for the coupling be-

tween quasiparticles. As already pointed out, the mean-
field approach completely neglects interactions in this
phase resulting in an energy functional given by Eq. (3)
with A � F � 0 and m�=m � 1. We determine A and m�

as a function of the interaction strength from quantum
Monte Carlo simulations. The binding energy is obtained
from the ground-state energy of the system with one spin-
down impurity in a Fermi sea of spin-up particles and the
effective mass from the curvature of the excitation energy
if the impurity carries a small momentum [12]. The results
for A are shown in Fig. 1. They are in excellent agreement
with the values recently obtained using exact diagrammatic
Monte Carlo methods [13] and, quite remarkably, also with
the results of a simple variational approach based on a
single particle-hole wave function [14]. The values we
obtain for the effective massm� are instead slightly smaller
than the diagrammatic Monte Carlo results of Ref. [13].
This might be due to a nonoptimal choice of the nodal
surface of the excited state at finite momentum, the FN-
DMC method provides, in fact, only an upper bound for the
energy unless the nodes of the many-body wave function
are known exactly, and to finite size effects in the analysis
of the low-momentum spectrum [15]. We also perform FN-
DMC calculations at finite concentration x for various
values of the interaction parameter 1=kF"a using the
Jastrow-Slater wave function described in Ref. [12]. The
results are presented in Fig. 2. By fitting the functional
form (3) to these results with A and m� obtained from the
single-impurity calculations, we determine the interaction
parameter F and its dependence as a function of 1=kF"a. At
unitarity we find A�1=kF"a � 0� � 0:99�1�, m��1=kF"a �
0�=m � 1:09�2�, and F�1=kF"a � 0� � 0:14, in agreement
with the findings of Ref. [12]. We notice that the NPP phase
reduces to the NFP one if x � 0.

(iv). Polarized superfluid gas (SFP).—This phase is
characterized by a number NP � N# of pairs and a number
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FIG. 1. Binding energy A of a single spin-down impurity in a
Fermi sea of spin-up particles. The dashed line is the molecular
binding energy �b for our short-range square well potential (with
2n"R

3
0 � 10�6 as in Ref. [12]). In the inset we show the equation

of state of the unpolarized superfluid SF0. The solid lines
correspond to best fits to the FN-DMC results.
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FIG. 2 (color online). Equation of state of the normal partially
polarized phase NPP as a function of the concentration x for
different values of the interaction strength. The solid lines
correspond to best fits of the energy functional (3) with the
values of A and m� obtained from the single-impurity calcula-
tions.
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NA � N" � N# of unpaired atoms, such that N � 2NP �
NA. We denote the concentration of the minority atoms by
y � N#=N". In the deep BEC regime the SFP phase corre-
sponds to a miscible mixture of NP bosons and NA fermi-
ons [16,17]. The interaction between bosons and fermions
is repulsive and is fixed by the atom-dimer scattering
length aad � 1:18a [18]. In this regime we write the equa-
tion of state in the form

 ESFP
�ESF0

�NP��
3

5
N"EF"

�
�1�y�5=3�

5kF"aad

3�
y�1�y�

�
;

(4)

where ESF0
�NP� � 3=5N"EF"y5=32G�1=kF"ay1=3� � �bNP

is the energy of the 2NP paired atoms and the other terms
in Eq. (4) correspond to the kinetic energy of the unpaired
atoms and to the interaction energy between atoms and
dimers treated at the mean-field level. We carry out FN-
DMC simulations of the SFP phase for various values of the
interaction strength. The nodal surface is modeled using a
BCS plus unpaired particles wave function written in the
form of a determinant as in Ref. [19]. The results are shown
in Fig. 3 together with the energy functional (4). The
agreement is remarkable down to quite small values of
the interaction parameter 1=kF"a � 0:5 [20]. Furthermore,
we notice that the SFP phase reduces to the SF0 one if
y � 1.

We are now in a position to study the coexistence
between the superfluid and normal phases introduced
above. One requires the equilibrium of pressures between
the superfluid pS � �@ES=@VS and the normal pN �
�@EN=@VN state and the equilibrium of chemical poten-
tials. In the normal phase there are two chemical potentials
for the NPP state: �N"�#� � @EN=@N"�#�, which reduce to
only �N" for the NFP state. Similarly in the SFP phase one
can vary both the number of pairs�SP � @ES=@NP and the
number of unpaired atoms �SA � @ES=@NA, while in the

SF0 phase only the chemical potential of pairs �SP with
NP � N=2 is relevant.

(a) Phase separation between SFP and NFP.—The equi-
librium conditions are pS � pN and �SA � �N". For a
given concentration y of the spin-down atoms in the SFP
phase, the two conditions determine the values of the
densities of the spin-up component in the two coexisting
phases. The ratio Pc �

1�y
1�y gives the critical polarization

above which the system begins nucleating the normal
phase to accommodate the excess polarization. By increas-
ing P above Pc, the equilibrium densities of the two
phases, as well as the critical concentration y of the SFP

phase, do not change; instead, the volume fraction VN=V of
the normal phase increases and eventually becomes the
entire volume for P � 1. The critical polarization line,
corresponding to a first order phase transition, is shown
in the phase diagram of Fig. 4. At P � 1 this line termi-
nates at the tricritical point 1=kF"a � 1:7 [21]. For larger
values of 1=kF"a the homogenous SFP phase exists up to
P � 1 and the superfluid to normal transition becomes
second order. For a given concentration y the SFP-NFP state
is stable provided �SP � �N" ��N# � EF"�1� 3A=5�,
i.e., until the process in which pairs break and spin-down
particles start to populate the normal phase remains ener-
getically unfavorable. The instability line, corresponding
to x � 0, marks a second order phase transition where the
fully polarized normal phase evolves continuously into the
partially polarized normal phase. At P � 1 this line termi-
nates at the point 1=kF"a � 0:73; for smaller values of
1=kF"a a superfluid cannot exist up to P � 1. For small
polarizations the second order transition line terminates at
the point corresponding to Pc � 0:015 and 1=kF"a � 0:61.
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FIG. 3 (color online). Equation of state of the superfluid po-
larized phase SFP as a function of the concentration y for dif-
ferent values of the interaction strength. The solid lines corre-
spond to the energy functional (4).
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FIG. 4 (color online). Phase diagram as a function of polar-
ization and interaction strength. In terms of the Fermi wave
vector kF � �3�2n�1=3 fixed by the total density n � N=V one
has 1=kFa � 1=kF"a at P � 0 and 1=kFa � 21=3=kF"a at P � 1.
On the BCS side of the resonance our determination of the
critical polarization is not reliable. For �1=kF"a * 1 we obtain
Pc using the BCS theory (see the text).
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(b) Phase separation between SFP and NPP.—In this
case one has to fulfill three equilibrium conditions: pS �
pN , �SA � �N", and �SP � �N" ��N#. It is worth point-
ing out that the SFP-NPP phase separated state does not
exist within the mean-field description, where either the
normal state is fully polarized or the superfluid state is
unpolarized. By approaching the unitary limit the SFP-NPP

state becomes unstable because the polarization of the
superfluid is energetically unfavorable and the SFP phase
evolves continuously into the SF0 phase. The instability
line, corresponding to y � 1, marks another second order
phase transition. This line terminates at the following
points: P � 0:94 and 1=kF"a � 0:63 and P � 0 and
1=kF"a � 0:53. In particular, the point at P � 0 corre-
sponds to the smallest value of 1=kF"a below which the
superfluid phase cannot be polarized [22]. The second
order transition lines at x � 0 and y � 1 are indeed very
close and, given the uncertainty in the determination of the
equation of state of the various phases, we cannot exclude
that they might coincide, corresponding to a single second
order phase transition where the superfluid polarizes and
the normal phase becomes fully polarized, or that they
might have a reversed order producing a small region of
the SF0-NFP mixed phase instead of the SFP-NPP one. It is
important to stress, however, that in the relevant region we
can provide a reliable description of the equation of state of
the superfluid (see Fig. 3) and of the normal phase, where
for small concentration x only the term containing the
binding energy A is important.

(c) Phase separation between SF0 and NPP.—One has to
fulfill two conditions: pS � pN and �SP � �N" ��N#.
The SF0-NPP state is stable provided �N" � �SA, corre-
sponding to the instability against polarization of the su-
perfluid. The instability line coincides with the second
order phase transition for y � 1 obtained above. The criti-
cal polarization line Pc �

1�x
1�x marks instead the first order

phase transition from the normal to the superfluid gas. At
unitarity we find Pc � 0:39 [12] in contrast with the value
Pc � 0:93 predicted by mean-field theory [6]. Notice that
the Landau-Pomeranchuk energy functional (3) does not
provide a valid description of the NPP phase if the con-
centration x becomes large. For this reason, on the BCS
side of the resonance, our results for Pc are limited to
the region close to the unitary limit. In the deep BCS
regime one can calculate the critical polarization by
using the following energy functionals for the NPP and
the SF0 phase, respectively [19,23]: ENPP

� 3N"EF"=5�1�

20kF"jajx=9�� x5=3� and ESF0
� ENPP

� 3N"�
2
gap=4EF",

where �gap � �2=e�
7=3EF"e

��=2kF"jaj is the superfluid gap.
From the equilibrium conditions one obtains Pc �
3=

���
8
p
�2=e�7=3e��=2kF"jaj, holding to leading order in P.

In conclusion, we have investigated the phase dia-
gram of a Fermi gas at T � 0 as a function of polarization
and interaction strength. This analysis, carried out for

uniform gases, is relevant also for systems in harmonic
traps that can be studied by means of the local density
approximation.
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