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We report on the successful operation of an analogue computer designed to factor numbers. Our device
relies solely on the interference of classical light and brings together the field of ultrashort laser pulses
with number theory. Indeed, the frequency component of the electric field corresponding to a sequence of
appropriately shaped femtosecond pulses is determined by a Gauss sum which allows us to find the factors
of a number.
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In 1836 Henry Fox Talbot used ‘‘a magnifying glass of
considerable power’’ [1] to investigate the interference
pattern of light emerging from a diffraction grating pro-
duced by Joseph von Fraunhofer. Talbot noticed ‘‘a curious
effect’’: the interference patterns in planes parallel to the
grating repeated themselves periodically as the distance
between the plane and the grating increased. Almost 50
years later this self-imaging effect was rediscovered and
explained by Lord Rayleigh [2]. Today the Talbot effect [3]
manifests itself not only in electromagnetic waves [4] but
also in matter waves with applications ranging from the
observation of interferences in C60 molecules [5] to lithog-
raphy [6]. In this Letter we report on a modern day variant
of the Talbot effect using appropriately shaped femtosec-
ond laser pulses and use it to factor numbers.

Factorizing numbers is an important problem in network
as well as security systems [7]. Many attempts have been
made to use quantum systems to dramatically increase the
efficiency. However, even today the challenge remains and
only small numbers [8] have been factorized using a quan-
tum algorithm.

At the same time, other physics-based methods for
factorizing numbers have been proposed [9]. One of
them relies on the properties of the truncated Gauss sum
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consisting of M� 1 terms, and N is the number to be
factored. The argument l scans through all integers be-
tween 2 and

����
N
p

for possible factors. When l is not a factor,
the quadratic phases oscillate rapidly with m and the sum
takes on small values. When l is a factor, then all the phases
are multiples of 2� and the sum is equal to unity.

The proposed implementations of A�M�
N are based on

multipath interferences [9]. Each path produces one term in
the Gauss sum. The difficulty is to find a system which is
experimentally accessible and in which the required phase
in Eq. (1) is obtained by a simple variation of a physical
parameter.

So far this strict condition has not yet been fulfilled.
Nevertheless, several experiments in which each phase of
the Gauss sum is separately computed have recently suc-
ceeded to demonstrate the ability of Gauss sums to factor-
ize numbers with physical systems. In two experiments
based on NMR techniques [10,11] the nuclear spins are
driven by a series of radio-frequency pulses. In a more
recent experiment, cold atoms are excited by a sequence of
Raman � pulses [12].

In the present Letter we introduce an all optical ap-
proach toward factoring numbers relying on modern pulse
shaping technology. Indeed, the generation of arbitrarily
shaped optical waveforms [13] is of great interest in a
number of fields ranging from coherent control [14] to
information processing [15–17]. For example, pulse
shapers have led to an elegant implementation of the
Grover search algorithm using Rydberg atoms as quantum
registers [15]. Moreover, optical realizations of the Grover
[18] or the Bernstein-Vazirani [19,20] algorithms have
been used. Our work extends this line of research to
factoring numbers using the Talbot effect.

Three elements determine the Talbot effect: (i) a grating
which is periodic in space and creates a periodic spatial
field distribution, (ii) interference of the waves emerging
from each slit of the grating, and (iii) the paraxial approxi-
mation of classical optics which leads to the accumulation
of quadratic phases in the time evolution of these waves.
As a consequence, the intensity distribution of light on a
screen is determined by a Gauss sum.

The present implementation follows exactly this recipe
except that it takes place in the time rather than the space
domain. For this temporal Talbot effect [21], we consider
an electric field
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consisting of a sequence of short pulses approximated by
delta functions. The pulses of carrier frequency !L and
phases �m appear at times �m, and the weight factors wm
guarantee that the energy of the pulse remains finite.
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The frequency component

 E�!� �
Z 1
�1

dt ~E�t�ei!t (3)

of this pulse sequence defined by the Fourier transform
follows from the interference of the Fourier components of
the individual pulses

 E��!� �
X
m

wm exp�i��m � �m�!��; (4)

with �! � !�!L.
By imprinting appropriate phases on the pulses with

pulse shapers we can obtain the quadratic phases character-
istic of the Talbot effect. For example, the special choice
�m � �2�m2N=l with times �m � mT and the weight
function

 wm �
�
�M� 1��1 for 0 	 m 	 M
0 otherwise

(5)

yield for �! � 0, that is, ! � !L, the Gauss sum Eq. (1).
This Gauss sum is thus directly calculated by multipath
optical interferences between the optical pulses.

The laser system is a conventional Ti: Sapphire laser
delivering pulses of �L � 30 fs at 805 nm with 80 MHz
repetition rate. The laser pulses are shaped with a program-
mable 640 pixels phase and amplitude pulse shaper offer-
ing a shaping window of Tw ’ 30 ps [22].

In order to generate at once the shaped pulse sequence
required by Eq. (2), the complex spectral mask

 H��!� � wm
XM
m�0

exp�i��m � �m�!�� (6)

is applied with the pulse shaper to modify the Fourier
Transform limited input laser pulse: Eout�!� �
H��!�Ein�!�. Each term of the sum in Eq. (6) is therefore
produced by one ultrashort pulse delayed by �m and with
an extra phase shift �m. Here we choose T � 200 fs in
order to produce a sequence of well separated pulses.

The interference produced by the pulse sequence is
simply analyzed with a high resolution spectrometer. We
measure the spectral intensity at the central wavelength
�L � 2�c=!L and thus retrieve the Gauss sum for each l.
The experiment is performed for l ranging between 2 and����
N
p

in order to discriminate factors from nonfactors.
Figure 1 shows two typical spectra obtained for N �

105 and l � 3 or 9 with M� 1 � 4 pulses and after
averaging over circa 10 s. The complex structure reflects
the multipulse interferences and underlines the requested
high resolution (about 0.06 nm). The normalization is
obtained from full and minimal shaper transmission.

Several numbers have been factorized with this method.
In Fig. 2 we display the results of our optical implementa-
tion of the factorization scheme based on Gauss sum for
N � 105 � 3
 5
 7 obtained with a four-pulse se-
quence (a), and for N � 15251 � 101
 151 with a
nine-pulse sequence (b). The first example consists of the

product of twin primes whereas the second consist of quite
far primes allowing to test the validity of the method.

The experimental data indicated by black dots are com-
pared with the expected values jA�M�

N �l�j
2 depicted by

crosses, and the agreement is very good, particularly for
the factors whose Gauss sum comes out very clearly. The
experimental contrast is in general smaller than expected.
This reduction could be due to several experimental limi-
tations. (i) Our shaper is pixilated in the spectral domain
and therefore introduces temporal replica. These replica

FIG. 1. Spectra of a M� 1 � 4 pulse sequence (N � 105).
l � 3 (a) and l � 9 (b). The vertical line represents !L.

FIG. 2. Experimental realization of factoring using a sequence
of shaped ultrashort pulses: (a) N � 105 � 3
 5
 7 with 4
pulses, (b) N � 15251 � 101
 151 with M� 1 � 9 pulses.
Experiment (dots); theory (crosses).
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are separated by 35 ps and are particularly broad and weak
due to the nonlinear dispersion in the mask plane [23,24]
which was carefully calibrated. This time window of 35 ps
is restricted down to 28 ps by the effect of the Gaussian
envelope due to the spatial beam profile in the mask plane
[22,24]. Its consequences are limited here by working
on only a fraction (3–7 ps) of the shaping window.
(ii) Another consequence of pixilation is the hole in am-
plitude associated to large phase steps between consecutive
pixels [25] which may induce small distortions as com-
pared to the ideal transmission H��!�. (iii) The main
limitation to the extinction ratio (currently of 20 dB) is
due to the gaps between pixels in the LCD (3% of the pixel
width) adding a nonprogrammable pulse at t � 0, which
participates also to this loss of contrast. This contribution is
difficult to compensate and produces undesired interfer-
ences with the pulse train [22]. (iv) Finally the resolutions
of both pulse shaper and spectrometer limit the ultimate
contrast which can be achieved. Both are carefully cali-
brated following the procedure described in [22].

A key issue in the efficiency and reliability of this
scheme is the choice of the truncation parameter M of
the Gauss sum. This question is closely related to the
phenomenon of ghost factors [26]. Indeed, for certain
integer arguments l, the Gauss sum can take values close
to unity even when l is not a factor of N. Ghosts can be
suppressed [26] below the threshold of 1=

���
2
p

by choosing
M ’ 0:7

����
N4
p

.
The example N � 19043 � p�p� 2� with p � 137 is

perfectly suited to test the predictions of Ref. [26] con-
cerning ghost factors. In this case,N consists of the product
of twin primes which are approximately equal and of the
order of

����
N
p
� 137:996. In this way we can test our

method at the upper boundary
����
N
p

of our set of trial factors.
For this purpose we first note that for any integer numberN
consisting of the product of twin primes the elementary
relation N � p�p� 2� � �p� 1�2 � 1 yields the approxi-
mation p� 1 �

����
N
p

together with the decomposition
N=�p� 1� � �p� 1� � 1=�p� 1�. As a result the trun-
cated Gauss sum reduces to

 A �M�
p�p�2��p� 1� �
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�
: (7)

Since 1� M and 1� �p� 1� we can approximate this
sum by a Fresnel integral which yields [26] the scaling
M /

�������������
p� 1
p

�
����
N4
p

.
In Fig. 3 we display by crosses the exact sum

jA�M�
19043�138�j2 as a function ofM. We note the slow decay

and the oscillations due to the Fresnel integral. Solid dots
representing our measurements follow this behavior. The
general trend is well reproduced. However, the experimen-
tal uncertainties do not allow to reproduce fully the ex-
pected oscillations. Moreover, we find the predicted
threshold M ’ 0:7

�������������
190434
p

’ 8. In the inset, an experimen-

tal realization of factoring N � 19043 � 137
 139 with a
nine-pulse sequence is shown as an example. Theory and
experiments are also in excellent agreement.

Our work clearly demonstrates that we can use shaped
femtosecond pulses to implement Gauss sums and factor
numbers. However, many generalizations offer them-
selves. (i) So far we have only made use of the phases
�m in the frequency representation Eq. (4) of the electric
field. The second contribution to the phase, that is, the
product �m�!, did not enter since we set �! � 0.
(ii) Since we have only the single parameter �m at our
disposal, the number N to be factored and the trial
factor l cannot be varied independently. (iii) Finally we
have pursued a sequential rather than a parallel ap-
proach. Indeed, we have only used a single spectral
component.

The activation of the so far unused phase �m�! solves
all three problems. Since now we have two parameters we
can encode N in �m and l in �!. By recording the com-
plete spectrum we achieve a massive parallelism.

The choice of �m � 0 and �m � 2�m2N� with the
numerical constant � also yields the Gauss sum A�M�

N
and illustrates this new approach. Here the spacing be-
tween pulses increases quadratically and l is inversely
proportional to �! such that a single spectrum directly
contains all the information.

However, some remaining difficulties need to be over-
come: (i) The Gaussian shape of the spectral profile leads
to ponderations in the Gauss terms which have to be taken
into account. (ii) The variation of l between 2 and

����
N
p

, i.e.,
on several orders of magnitudes, puts severe constraints on
the spectral resolution necessary to carry the experiment.
(iii) Finally, the number of pulses is limited by

����������������
Tw=3�L

p
’

10 with our present setup.
The quadratic spacing of the pulses required in the above

approach might represent a severe problem. The choice
�m � 0 and �m � 2��m�m2=N�, which leads to the
Gauss sum [9]

FIG. 3. Suppression of the ghost factor l � 138 of N �
19043 � 137
 139 for increasing number of pulses. Inset :
Experimental realization of factoring N � 19043 with M� 1 �
9 pulses. Experiment (dots); theory (crosses).
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might be an interesting way around, since it also allows us
to factor numbers. In contrast to the truncated Gauss sum
A�M�

N , which only needs to be recorded at integer argu-
ments, the sum SN relies on a continuous argument. Here
we need the complete spectrum. In return SN displays
interesting scaling properties which enable us to use the
interference pattern for N to factor the number N0 by
rescaling the frequency axis [27].

We conclude by noting that our implementation is
closely connected to the Talbot effect in a harmonic oscil-
lator [28]. Indeed, an initial wave function consisting of an
array of sharp maxima located at integer multiples m of a
period d accumulates quadratic phases in its time evolu-
tion. On first sight this behavior is surprising since the
energy spectrum of the harmonic oscillator is linear.
However, due to the quadratic dependence of the energy
on the position, the maxima at md translate into quadratic
phases �md�2. A similar behavior was noted [29] in the
quantum carpets woven by a wave packet moving in a
harmonic oscillator and consisting only of energy eigen-
states with quadratic quantum numbers.

Although the electromagnetic field represents a har-
monic oscillator it might be easier to realize a factorization
scheme based on this effect using a mechanical oscillator.
A laser cooled atom placed into an optical lattice and
prepared in its motional ground state offers a possible
realization. An absorption grating [30] produced by a
standing light wave can prepare the periodic array of
narrow wave packets. Moreover, the coupling of the
center-of-mass motion to a quantized standing light field
[31] can introduce entanglement into the Talbot effect,
making factorization with entangled Gauss sums viable.

In summary, we have factorized numbers through the
implementation of a Gauss sum with optical interferences
produced by a sequence of shaped short laser pulses. This
work opens the route to further promising develop-
ments based on the wide flexibility offered by optical
interferences.
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[30] R. Stützle et al., Phys. Rev. Lett. 95, 110405 (2005).
[31] For an introduction to atom optics in quantized light fields

see W. P. Schleich, Quantum Optics in Phase Space
(Wiley-VCH, Berlin, 2001), Chap. 20.

PRL 100, 030202 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
25 JANUARY 2008

030202-4


