
Comment on ‘‘Taylor Dispersion with Absorbing
Boundaries: A Stochastic Approach’’

Recently, Biswas and Sen analyzed the Taylor-Aris dis-
persion of point-sized solutes entrained in a Poiseuille flow
between two reactive plates, where the solute is depleted
via a first-order reaction on the plates [1]. They argue that
classical Taylor-Aris dispersion methods fail to properly
describe the long-time transport process, and claim to
present, for the first time, the correct stochastic description.

Generalized Taylor-Aris dispersion theory [2] has long
since been properly modified to describe reactive transport
processes [3,4]. Not only have the specific problems of
reactive flow in a tube [3] and between a reactive and an
inert plate [4] been examined, but the general approach has
also been extended to arbitrary continuous systems with
first-order surface and bulk reactions [3,4], time-periodic
systems [5], spatially periodic systems [6] and mixtures of
reacting species [7]. The extant theoretical framework [2–
7] extends far beyond the simple problem considered in
Ref. [1] and leads to nontrivial concepts, such as the
fictitious initial condition, that are not addressed by
Biswas and Sen.

In the generic continuous Taylor-Aris dispersion para-
digm [2], the physical space is decomposed into an un-
bounded global space Q, where the transport properties are
independent of position in Q-space, and a bounded local-
space q, where these properties may depend functionally
on position in q-space. For example, the problem of reac-
tive plates located at y � �h furnishes Q � x and q � y.

The reactive probability density Pr�Q;q; tjq0� of locat-
ing a reactive particle at position (Q, q) at time t, given its
introduction at (0, q0) at time t � 0, can be mapped to the
nonreactive probability density P�Q;q; tjq0� via [4]

 P�Q;q; tjq0� �
exp� �Kt�
A�q�

Pr�Q;q; tjq0�: (1)

To apply the moment matching scheme for P, it is neces-
sary that

R
PdQdq � 1. Substituting Eq. (1) into the gov-

erning convection-diffusion-reaction equation and
(possibly reactive) boundary conditions governing Pr,
and then imposing the latter normalization condition, leads
to a self-adjoint eigenvalue problem for �K and A�q� [4].
The eigenvalue �K with the smallest real part is the net
reaction rate �K�, and its corresponding q-space eigenfunc-
tion A�q� is the normalizing function required for Eq. (1)
and subsequent calculations of the mean velocity vector U�

and dispersivity dyadic D� [4]. Upon making this trans-
formation, the standard Taylor-Aris moment matching
scheme can be applied to P and then mapped back to the
reactive probability density Pr, ultimately resulting in a
macrotransport equation
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� �U� � r �Pr 	 �D�:rr �Pr � �K� �Pr � A�q0���Q���t�

(2)

for the long-time, local-space averaged probability density
�Pr�Q; tjq0� governing a solute introduced at local position
q0. This represents a complete asymptotic description of
the problem [3], the higher-order moments not being
needed for long times, in agreement with [1]. It is crucial
to note that the effective description (2) requires a
q0-dependent ‘‘fictitious’’ initial condition, a point which
was not addressed in [1]. In simple cases like flow in a
surface-reactive tube [3], the nonintuititve behavior noted
in [1] is observed.

In conclusion, the correct stochastic description is not
only known, but has been widely applied and extended [2–
7]. This problem has also been addressed by a number of
other coarse-graining methods [8].
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