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We report the first experimental study of a model system of a two-dimensional colloidal crystal in a
random pinning potential. The colloidal crystal consists of monodispersed charged polystyrene micro-
spheres suspended in deionized aqueous media and confined near a rough charged surface. It is found that
the static orientational correlation function g6�r� decays exponentially for intermediate and strong
pinning, in agreement with theories. The driven depinning is dominated by thermally activated creep
motion along 1D-like channels between regions with short-range order. A coexistence model is proposed
for describing the observations.
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Long-range order and rigidity are two closely related
fundamental properties in condensed matter physics [1].
Often one can gain significant insights into the nature of
order by studying the response of a system to a perturb-
ing force. This well-established paradigm is faced with
significant challenges when applied to systems with
quenched disorder in the form of a static random potential
landscape. It was pointed out in the seminal papers of
Larkin [2] and of Imry and Ma [3] that true long-range
order cannot survive in three-dimensional and two-
dimensional systems with random pinning. As a result,
there is always a complex interplay between elasticity
and random pinning in statics and dynamics. Establishing
a new paradigm in relating the driven dynamics to the
structural order in random pinning systems is an important
task.

The challenge is to identify and characterize the micro-
scopic processes involved in the driven dynamics. In this
Letter, we study a model system of 2D colloidal crystals.
We report the first direct observation of the statics and
dynamics of 2D colloidal crystals in a random substrate
potential landscape created by microfabrication. It is found
that the quasi-long-range order [4,5] of a 2D crystal is
indeed destroyed as predicted by theories [2]. However,
the dynamics of the system near the threshold of driven
depinning show many interesting features characteristic of
coexisting solid and liquid.

In this experiment, a monolayer of polystyrene micro-
spheres, 0:36 �m in diameter, suspended in deionized
water, was confined between two substrates, a quartz disk
and a cover slip. For smooth surfaces, an ordered 2D
colloidal crystal is formed (at room temperature) for a
sufficient areal density of particles, due to the strong
Coulomb repulsions. The areal density of the 2D system
was � 1:6 �m�1. The details of our sample cell can be
found in [6,7]. To create a random pinning potential land-
scape, the quartz surface is roughened using a reactive-ion-
etching technique [7]. To create samples of different pin-
ning strengths in situ without changing other parameters of
the colloidal suspension, several plateaus of different

heights, differing by 500 nm, on the same substrate are
fabricated (by ion-beam milling). It should be noted that
the height difference is expressed as different separations d
between the opposing surfaces (the pinning effects are
more pronounced for smaller d, see below). (For d >
2:5 �m, a bilayer square or hexagonal crystal forms.)

The rough surface results in a static pinning potential
spatially varying with characteristic length scale of a few
hundred nanometers, i.e., a few pinning sites per lattice
spacing. Using video microscopy [8], one can determine
the pinning potential landscape V� ~x�. For substrate sepa-
ration d � 1:0 �m, the characteristic energy scale of V� ~x�
is estimated [8] to be E0 � 0:4kBT.

Figure 1 shows the statics of 2D colloidal crystals as a
function of pinning strength. Both the pair distribution
function g�r� and the orientational correlation function
g6�r� are shown. For an ordered state, g�r� is sharply
peaked at r values corresponding to magnitudes of lattice
vectors. For the case of strong and intermediate disorder, at
d � 1:0 and 1:5 �m, the pair distribution functions are
liquidlike. For d � 2:0 �m, the particles are further away
from the confining walls, the particle-wall interaction is
strongly screened, and the effective pinning potential is
weak. As a result, g�r� and g6�r� are characteristic of a 2D
crystal.

The orientational order is quantified by the orientational
correlation function g6�r� � h 6�0� �6�r�i, which is calcu-
lated using the bond-orientational order parameter field
 6� ~x� [9]. For the ith particle,  6 is defined as  6� ~xi� �P
je
�i6�ij , where �ij denotes the angle of the line connect-

ing nearest neighbors i and j. One expects g6�r� � e�r=�

for a disordered phase, and g6�r� approaches a nonzero
value at large r for an ordered phase. For the disordered
states (d � 1:0 and 1:5 �m), g6�r� shows exponential
behavior, with � � 1:6 �m and � � 3:3 �m, correspond-
ing to characteristic sizes of ordered regions of 2 and 4
lattice spacings, respectively. For d � 2 �m, g6�r� is con-
stant with r, indicating long-range orientational order (lim-
ited by the sample size).

PRL 100, 028303 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
18 JANUARY 2008

0031-9007=08=100(2)=028303(4) 028303-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.100.028303


The exponential decay of g6�r� for d � 1:0 and 1:5 �m
observed here is consistent with theories [10] that topo-
logical defects (dislocations and disclinations) will be
induced by disorder. Figure 2 shows the typical defect
structures observed at strong pinning for d � 1:0 �m.
Clusters of edge dislocations and disclinations (fivefold
and sevenfold coordinated particles) are randomly dis-
persed between misoriented crystallites of sixfold coordi-
nated particles. Occasionally, one can identify a bound
dislocation pair (shown in Fig. 2).

The fact that g6�r� is exponential for d � 1:5 �m, but
remains constant for d � 2:0 �m, indicates disorder-
induced melting. Our data can be used to provide a test
of Larkin’s collective pinning model [2] which predicts
that the Larkin length RLO � 2x2�=�

���
n
p
E0�, where � is

the shear modulus of the 2D crystal and x, n, and E0 are the
range, density, and characteristic energy scale of the pin-
ning sites. At d � 1:0 �m, x � 0:3 �m, E0 � 0:4kBT,���
n
p
� 1 �m�1, and shear modulus� � 10kBT=�m2, giv-

ing RLO � 4:5 �m in agreement (in order of magnitude)
with the correlation length �.

Of particular interest is the response of the randomly
pinned 2D lattice to an external driving force f. It was
predicted [11] that there is a dynamical phase transition at a
critical driving force fc between pinned and moving
phases at T � 0 for a purely elastic system. The average

velocity is predicted to follow critical scaling as v� �f�
fc��, with � � 2=3 for a 2D elastic solid. At finite tem-
peratures, one expects that the critical depinning should be
preempted by thermally activated motion. In the collective
creep model [12], the driven motion is facilitated by the
creep of Larkin crystallites (or domains). However, recent
numerical studies suggest a different kind of scenario for
the depinning dynamics. For example, it has been found in
numerical simulations that the depinning objects are linear
channels [13,14].

In our experiment, the 2D colloid layer is driven [15] by
an electrical field. We typically applied 1–20 Von the elec-
trodes spaced at about 5 mm (electric field 2–40 V=cm). In
the case of weak pinning (ordered 2D lattice), the system
exhibits elastic depinning, with the particles keeping the
same neighbors as they move. For the strongly pinned dis-
ordered states, the system exhibits riverlike flow at the on-
set of motion. Figure 3 shows the trajectories of the parti-
cles near the threshold of depinning. A small fraction of
particles is flowing in fractal-like channels around pinned
islands. Each channel path does not repeat itself when the
bias voltage is reset to zero and then turned back on. Thus
the channel is not specific to a special path on the substrate.

At higher driving voltage, the flowing-river network
becomes denser. We do occasionally observe, for inter-
mediate disorder (d � 1:5 �m), behavior reminiscent of
Larkin domain creep. In this case, the system is broken up
into crystallites of size about 10 lattice spacings, during
flow the crystallites do not break apart but maintain their
connectivity, sliding past each other. However this behav-
ior is more common at higher drive than close to the
depinning threshold.

From the trajectories of the particles f ~xig, we can obtain
their velocities f ~vig. Since we are interested in the drift
velocity, we smoothed f ~xig with a moving average routine
to minimize the effects of Brownian motion on the velocity

FIG. 2 (color online). Delaunay triangulation of a snapshot of
video images of a colloidal lattice in strong random pinning, for
d � 1:0 �m. The diamonds and squares represent fivefold and
sevenfold coordinated particles (disclinations), respectively. A
pair of edge dislocations is indicated by two solid (red) lines of
two lattice spacings long on the right.

FIG. 1. (a)–(c) Pair distribution function g�r�. From top to
bottom d � 2:0, 1.5, and 1:0 �m. Insets: Optical micrographs.
(d)–(f) Orientational correlation function g6�r�, calculated from
 6� ~x� profiles. Insets in panels (d)–(f): Semilog plots of the same
data. The dashed lines indicate the asymptotic behavior.
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data. The averaging window was typically 45 frames
(0.75 s), but similar results are obtained with slightly
different window size. In Fig. 4 we show the average
velocity v of the particles as a function of the applied
voltage. The curves were obtained by slowly ramping the
voltage. For strong disorder, v is practically zero and it in-
creases rapidly after a threshold voltage of order volts. The
increase in v has a positive curvature. For weak disorder,
the threshold is much smaller (order 0.1 V) and the v curve
is rising with a negative curvature. In both cases, at large
drive the velocity becomes linear to the applied force.

A striking observation is that, for a given drive voltage,
e.g., 8 V, the velocity of the intermediate pinning state at
d � 1:5 �m is much lower than that of the strong pinning
state at d � 1:0 �m. The trajectory data in Fig. 3 offer a
clue to this surprising result: for strong pinning, the indi-
vidual moving channels populate the whole system, while
at intermediate pinning, the moving particles are along
channel-like paths, along the grain boundaries between
the ordered domains which remain pinned.

We found that the d � 1:0 and 1:5 �m data in Fig. 4(a)
cannot be fitted to a simple power-law form v� �V � Vc��

where Vc is the threshold voltage. Instead, we found an
interesting exponential dependence of the average particle
velocity on the driving voltage for both strong and inter-
mediate pinning, at d � 1:0 and 1:5 �m. This behavior is

reminiscent of the thermally activated flux creep phe-
nomena in hard superconductors [18]. The exponential
rise in velocity is due to a linear suppression of the pinning
potential by the applied electric field. Thus we interpret the
exponential dependence in Fig. 4(b) as evidence for ther-

FIG. 4 (color online). (a) Average velocity versus applied
voltage. Note that the velocity is a nonmonotonic function of
separation d (and pinning strength, see text). (b) Semilog plots of
data in (a).

FIG. 3 (color online). Trajectories of particles showing the
morphology of flow. (a),(b) Strong disorder (d � 1:0 �m), tra-
jectories followed over 1.7 s. For (a) and (b), the driving voltages
are 5 and 7 V, respectively. (c),(d) Intermediate disorder (d �
1:5 �m), trajectories followed over 1.7 s. For (c) and (d), the
driving voltages are 6 and 9 V, respectively. The arrows indicate
the direction of applied driving force.

FIG. 5 (color online). Normalized velocity distributions as a
function of the amplitude of velocity, at various driving voltages.
(a) Weak pinning d � 2:0 �m, (b) strong pinning d � 1:0 �m.
Note that in (a), for elastic flow, the velocity distribution is a
single Gaussian centered at the average velocity. In (b), plastic
flow, the distribution is bimodal, indicating coexisting pinned
Larkin domains and moving channels.
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mally activated creep dynamics of the particles flowing in
the 1D-like channels between the Larkin domains as al-
ready implicated in the trajectory data in Fig. 3.

Another useful way to characterize the dynamic inho-
mogeneity of the depinning state is the probability distri-
bution P�v� of the velocities of the particles as introduced
by Faleski, Marchetti, and Middleton [13]. The normalized
probability distribution P�v� is defined as P�v� �
histogram=sum�histogram�, calculated after taking the his-
togram of the velocities over 1.5 s. The results for weak and
strong pinning cases are shown in Fig. 5. Here v is the
magnitude of the velocity, i.e., v > 0.

As shown in Fig. 5, for elastic flow, the velocities of the
particles are peaked around a nonzero average velocity and
the whole distribution is shifted to higher vwith increasing
drive. For plastic depinning, P�v� is bimodal, with one
peak at v close to zero, which is independent of driving
force, and another peak at a finite v, corresponding to the
pinned particles and moving particles, respectively.
Because of Brownian motion of the pinned particles, the
first peak is at a finite small value. The position of the
second peak shifts to higher v for higher bias voltage V.
The latter behavior is also seen in the simulations of
Faleski, Marchetti, and Middleton [13].

The emerging physical picture here is that thermally
activated depinning always occurs first along the 1D-like
easy channels. When a 2D crystal is completely disordered
by a strong random potential, the driven motion is that of
thermally activated motion of individual particles. The
system becomes fluidlike in statics and in motion. When
a 2D crystal is partially disordered by random pinning, as
in Fig. 3(c), the driven motion at the threshold of depinning
is governed by the few individual particles moving along
the grain boundaries separating the pinned ordered do-
mains. The system appears to phase separate into fluidlike
channels and pinned solid regions. We propose that it is
perhaps useful to think of such systems as a coexistence
phenomenon of coexisting solid, in the form of Larkin
domains, and liquid in the form of Faleski-Marchetti-
Middleton flow channels.
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