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Recent theoretical studies have predicted a new clustering mechanism for soft matter particles that
interact via a certain kind of purely repulsive, bounded potentials. At sufficiently high densities, clusters of
overlapping particles are formed in the fluid, which upon further compression crystallize into cubic
lattices with density-independent lattice constants. In this work we show that amphiphilic dendrimers are
suitable colloids for the experimental realization of this phenomenon. Thereby, we pave the way for the
synthesis of such macromolecules, which form the basis for a novel class of materials with unusual

properties.
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Self-assembly is the key expression that circumscribes
the incredibly rich wealth of ordered phases encountered in
soft matter systems. Starting from the face-center cubic
arrangement assumed by colloidal spheres at high concen-
trations [1-3] and low-symmetry crystals formed by soft
spheres [4], they extend over to a variety of alloys seen for
charged colloidal mixtures [5] and to the gyroid phases
assembled in block copolymer solutions [6—8]. Recent
theoretical and computational advances have predicted a
novel form of self-assembly in soft matter, i.e., the for-
mation of stable clusters [9—11] encountered for purely
repulsive, bounded effective potentials @ (r). These clus-
ters crystallize into cubic lattices at sufficiently high den-
sities and all temperatures [9] and they result into novel
solids with density-independent lattice constants, originat-
ing in multiple occupancy of the crystal sites [10]. This
phenomenon bears significant consequences both from the
fundamental point of view [10] and from the aspect of the
properties of the ensuing materials, e.g., their diffusion and
relaxation dynamics [12]. Though thoroughly understood
at the level of effective potentials, the phenomenon begs
the question: What kinds of particles display the class of
effective interactions giving rise to this phase behavior? In
this contribution we demonstrate that relatively simple
macromolecules can be designed to achieve this aim, tak-
ing advantage of the great flexibility offered by soft matter
systems to manufacture new materials.

The underlying theoretical concepts can be clearly
stated as follows. Repulsion-induced aggregation which
leads to ordered cluster phases requires that the Fourier
transform (FT) ®.x(k) of ®.(r) has negative parts for
some values of the wave vector k. If, however, Ci)eff(k) >0
for all k, reentrant melting occurs instead [13]. A sufficient
condition for the former is that ®/.(r =0) =0 [10].
Useful archetypes of bounded interactions [9,10] are the
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generalized exponential models of index n (GEM-n),
where ®,(r) = gexp[—(r/0)"], with & and o being
some energy- and length-scales: here, for n > 2 clustering
takes place, whereas for n =< 2 reentrant melting occurs
[14].

Searching for realizations of clustering-type potentials,
we concentrate on dendrimers, a choice motivated by their
outstanding properties. They are characterized by a high
degree of monodispersity and a well-defined, highly
branched internal structure; efficient dendrimer assembly
has been boosted by recent progress in synthetic techniques
[15]. Fundamentally, they serve as tunable soft colloids
that allow for control of their effective interactions via
changes in chemical composition, bond length and genera-
tion number [16,17]. For athermal dendrimers, ®.(r) has
a Gaussian shape [16] (n =2 in the GEM-n family),
hinting thus to the reentrant melting scenario. Closely
linked with these findings is the dense-core structure of
these dendrimers, arising from back folding of the terminal
groups [17,18].

Following the ideas of material design, we modify the
architecture of athermal, flexible dendrimers along well-
defined strategies. Since the Gaussian effective interaction
is at the threshold to clustering, we require the following
changes in ®.(r) to achieve clustering behavior: a flatter
core region, such as those of the GEM-n potentials with
n > 2, which—compared to a Gaussian—also display a
steeper decay of the repulsion for larger separations.
Alternatively, a positive effective interaction with a local
minimum at r = 0 also leads to oscillations in ®.;(g), as
we have ®/,;(r = 0) > 0 in that case. To realize this goal,
we aim for a more open structure and stronger segregation
between outer and inner particles by assembling amphi-
philic dendrimers built up from a solvophilic shell and
solvophobic core particles. In Fig. 1, we qualitatively
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FIG. 1 (color online). Schematic representation of the effective
potentials of amphiphilic dendrimers: interactions between the
different regions (solvophobic core—yellow, solvophilic
shell—blue) of amphiphilic dendrimers lead to interactions
that are steeper (red line) than the threshold of clustering
(Gaussian, black line).

illustrate how our modifications lead in the correct direc-
tion: as the macromolecules start to overlap, the solvo-
philic and thus mutually repulsive shells cause a steeply
increasing potential wall. This effect is reinforced upon
further decreasing the distance since core and shell repel
each other due to their different nature. Eventually, the
attractive core regions overlap and slow down further
growth of the repulsion, leading to a rather flat region or
even a local minimum in ®(7) at small distances.

In an effort to realize these ideas we developed a com-
puter model of second generation [17] amphiphilic den-
drimers [19] where the end groups form the solvophilic
shell (index S) and all other monomers the solvophobic
core (index C). The bonds between monomers are modeled
by the finitely extensible nonlinear elastic (FENE) poten-
tial [20]

FENE 2 r =B\
B(D/LV (r) = _K,MVR,UJ/IOg[l - <T> :|r (1)
mv
with uv = CC, CS, which restricts the bond length to be
in between [};3* and [}}}'. K, is the spring constant and
R,, = 1) — l?“,, with l%,, = (I3 + I3))/2 being the
equilibrium bond length. All other interactions between
two monomers separated by distance r are modeled by the
Morse potential [21]
BOY(r) = e, [e ) 1P~ 1} ()

my

with uv = CC, CS, SS, which is characterized by a re-
pulsive core at short and an attractive tail at long distances
whose depth and range are parameterized by €, and @,
respectively. The d,, are the monomer diameters. All
potential parameters of the dendrimers discussed in this
Letter are summarized in Table I.

We calculated the monomer density profiles for the core
and the shell particles, p-(r) and pg(r), in standard
Monte Carlo (MC) simulations of an isolated dendrimer.

TABLE I. Potential parameters of the dendrimers considered
in this study [cf. Egs. (1) and (2)], labeled D; and D,. ZZ refers
to the two central monomers.

FENE K/ 1/dee R/dce
cC 40 1.875 0.375
cS 30 3.750 0.750
7z 40 28125 (D)) 0.5625 (D,)
1.8750 (D) 0.3750 (D,)
Morse € a’dcc d/dCC
ccC 0.714 6.4 1
cs 0014 19.2 1.50 (D))
125 (D)
SS 0.014 19.2 2.0 (D))
1.5 (D,)

Representative results pertaining to two (D, D,) out of
seven model dendrimers simulated are shown in Fig. 2.
They demonstrate that both the core- and the shell-particle
distributions are of Gaussian shape, with the fitting pa-
rameters given in the respective panels. In striking contrast
to athermal dendrimers (see Fig. 2, inset), these density
profiles are—due to amphiphilicity —spatially segregated:
the distribution of the core monomers has its maximum
close to the origin while the profile of the shell particles is
centered between 0.85R, and R, (for all seven dendrimers
simulated), with R, being the dendrimer’s radius of
gyration.

Next, we performed MC simulations between two inter-
acting dendrimers, averaging over the degrees of freedom
of the constituent monomers to determine the effective
potential, ®(r). Allowing two dendrimers to interact
freely, their effective potential can be determined from
the centers-of-mass (c.m.) correlation function G(r), given
by G(R; — Ry|) = (0,(R|)0,(Ry)). Here, @;(R;) =
S8(R; — S;) is the density operator for the c.m. of den-
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FIG. 2 (color online). Monomer density profiles of the core
(red) and the shell (green) region as obtained by MC simulations
(symbols) and from fits to Gaussians (lines) for the amphiphilic
dendrimers D, (left panel) and D, (right panel). The interaction
parameters are given in Table I. In the inset, we show the same
for an athermal dendrimer of the same generation.
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drimer i, and the average (---) is taken over all c.m.
position vectors S; (i = 1, 2). ®4(r) is then given by
BD(r) = — In[G(r)], with 8 = 1/kgT. Since the repul-
sion between the dendrimers is expected to be strong at
short distances, this scheme will provide only poor statis-
tics for small separations. To cope with this problem, we
use non-Boltzmann sampling [22] where we divide the r

range into m = 15 windows of width Ar; = %(j +1)
and assume for each window j = 0, ..., m — 1 an umbrella

potential W;(r):

0 r,—6r<r<r:+Ar,+ 6r
Wi =10, e ITALTOr )
Here, ry = O and else r; = Z{;é Ar;. Further, ry,,x = SR,
and 6r is chosen to guarantee for slightly overlapping
windows (at the edges, 6r = 0). For each of these win-
dows, simulations of 2 X 103 MC sweeps are performed
and G/(r) is determined to within an additive constant due
to normalization. We obtain @ ;(r) in each window j as
—kgTIn[G;(r)] and these results are merged to form a
continuous curve which is finally normalized by setting
Bq)eff(r = rmax) =0.

A typical simulation snapshot of two interacting den-
drimers is shown in Fig. 3. Results for the effective inter-
actions of the two dendrimers are summarized in Fig. 4.
®¢(r) indeed shows a steep increase as the macromole-
cules approach and eventually becomes rather flat
[Fig. 4(a)], or even exhibits a locally attractive dip
[Fig. 4(c)] for smaller distances. We fitted ®.(r) of den-
drimer D by a GEM-n potential, finding that ®,(r) with
an index n = 3.1 approximates it with high accuracy. The
effective potential of dendrimer D, can be fitted to a
double-Gauss interaction of the form @ (r) =
€ exp[—(r/01)’] — eyexp[—(r/c2)*], where € =
236kBT, €y = 225kBT, o = 1117Rg, and Oy =
1.059R, . Both effective potentials lead to clustering, since
@/ (r=0)=0.

FIG. 3 (color online). Simulation snapshot of two interacting
amphiphilic dendrimers, both showing a dense shell conforma-
tion.

To provide a semiquantitative theoretical background to
these simulation results, we reconsider our amphiphilic
dendrimers within a suitably modified Flory theory. The
original idea of this concept [23] is based on the simplify-
ing assumptions that the spherosymmetric monomer den-
sities of isolated athermal dendrimers around the c.m.,
p(r), do not change upon close interaction. Here, p(r) =
(3;6(r — r;)) and r; denotes the position vector of mono-
mer j with respect to the center of mass. Thus, considering
two such dendrimers at c.m. separation R and assuming
that their profiles are not distorted by their mutual pres-
ence, the effective interaction between the two dendrimers
takes the form

O (IR]) = f[ (Dol — RD)w(ley — r))drydrs,
“4)

where v(|r; — r,|) is the monomer-monomer interaction.
For the latter, a contact interaction weighted by the second
virial coefficient v, of the monomer-monomer interaction
is introduced, Bv(|r; — r;|) = vy6(|r; — ry|). For ather-
mal dendrimers, vy > 0. The FT of @ (r) given in Eq. (4)
then reads in this case B®(k) = vop2(k) >0 V k.
Generalizing this model to amphiphilic dendrimers, we
treat the core and the shell profiles separately, introducing
three different excluded volume parameters, v, vcg, and
vgg given by the second virial coefficients of the under-
lying monomer-monomer interactions. Proceeding along
similar lines as above leads to the FT of the effective
interaction between amphiphilic dendrimers as Bfi)eff(k) =
> VP (K)p,(k), where p,, (k) is the FT of p,(r) and
m, v=C, S. Core solvophobicity implies v <0,

whereas vy, vgg > 0. Consequently, ®.¢(k) can also dis-
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FIG. 4 (color online). The effective potentials ®(r) of typi-
cal amphiphilic dendrimers [(a),(c)] and their FTs ®(q)
[(b),(d)], showing negative parts. The blue dashed line denotes
the theoretical result (see text), and the green lines are fits to the
simulation data. (a) and (b) pertain to dendrimer D, (c) and
(d) to D,. The insets in (a) and (c) feature simulation snapshots
of the respective dendrimers.
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play negative components. The values of the second virial
coefficients for our dendrimers are vee = —1.90, vgg =
28.40 and Ucs = 11.31 (Dl)’ and Ucc = _190, Vss =
11.31 and veg = 6.25 (D,), measured in dg¢. Based on
the simulation results (cf. Fig. 2), we model the monomer
densities p,(r) as Gaussian functions, p,(r) =
S, exp[—y,(r — r,)?], taking for S,, y,, and r,, pu =
C, S, those values that provide the best fit of the simulation
data, quoted in Fig. 2. Approximate expressions for the
p (k) are given in [24]. The theoretical results for D (k)
and hence @ ¢(r) are shown in Fig. 4 along with the data
extracted from the simulations. In view of the simplifying
assumptions of Flory theory, the good qualitative agree-
ment between simulations and theory is astonishing. The
negative Fourier components [Figs. 4(b) and 4(d)] are less
pronounced in theory than in simulation; thus, the former
provides a lower threshold to the onset of clustering.

The counterintuitive phenomenon of clustering in the
complete absence of attraction might motivate experi-
mental groups to assemble amphiphilic dendrimers in
the lab. To this end let us summarize our guidelines for
synthesizing clustering dendrimers. In a first step, suit-
able solvophobic core and solvophilic shell groups have
to be chosen for the experiments, for which simulations
on an isolated dendrimer are performed, leading to the
core- and the shell-density profiles. While Flory theory
provides a reliable qualitative indicator whether the thresh-
old to clustering has already been reached, full evidence
can then be gathered by measuring the effective interac-
tions in the more time-consuming simulations of two in-
teracting dendrimers. Examining the data of all seven
dendrimers investigated, we find that bigger end groups
and/or shorter end-group spacers lead to a stronger repul-
sion in @4 (r) at short distances. On the other hand, upon
increasing the spacer length of the end groups and/or re-
ducing the one between the two central particles, D (r)
becomes flatter and eventually even develops a dip at small
distances. The same effect is found when reducing the size
of the end-groups. The low dendrimer-generation num-
ber is encouraging for experimentalists because it hints at
a rather straightforward synthesis process [15]. Since
@ (r = 0) ~ kpT, clustering can easily be realized under
ambient conditions in thermally activated processes.

The findings of this work bear significance for soft
matter science and materials design at various levels. At
the one-particle level, we have established that synthesiz-
ing open dendrimers with a segregated core-shell structure
requires neither stiff bonds nor electrostatic repulsions as
commonly believed: amphiphilicity is sufficient, a feature
already implied by group segregation and the ensuing
micelle formation of surfactants and block copolymers
[25]. Contrary to the latter, however, the dendrimers at
hand repel each other and they cannot form clusters in
dilute solutions. At the many-body level, solutions of such
dendrimers will display pronounced correlations at a single
length scale, independently of the density [10], allowing

thus for well-controlled spatial modulation of confined
liquids and, e.g., their local index of refraction, whose
intensity can be tuned by changing the degree of confine-
ment. Crystals formed by such systems show density-
independent lattice constants, a novel form of self-
assembly of condensed matter. Such crystals are quite
unusual: they are diffusive on the single-particle level,
allowing thus for mass transport; at the collective level,
however, arrested, and thus rigid as a conventional solid
[12]. Finally, on the fundamental level, we have demon-
strated that within soft matter, bounded effective interac-
tions can be manipulated with the same degree of
flexibility as diverging ones do.
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