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2Unité Mixte de Physique CNRS/Thales, Route départementale 128, 91767 Palaiseau, and Université Paris-Sud, 91405 Orsay, France
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Domains in ferroelectric films are usually smooth, stripelike, very thin compared with magnetic ones,
and satisfy the Landau-Lifshitz-Kittel scaling law (width proportional to square root of film thickness).
However, the ferroelectric domains in very thin films of multiferroic BiFeO3 have irregular domain walls
characterized by a roughness exponent 0.5–0.6 and in-plane fractal Hausdorff dimension Hjj � 1:4� 0:1,
and the domain size scales with an exponent 0:59� 0:08 rather than 1

2 . The domains are significantly
larger than those of other ferroelectrics of the same thickness, and closer in size to those of magnetic
materials, which is consistent with a strong magnetoelectric coupling at the walls. A general model is
proposed for ferroelectrics, ferroelastics or ferromagnetic domains which relates the fractal dimension of
the walls to domain size scaling.

DOI: 10.1103/PhysRevLett.100.027602 PACS numbers: 77.80.Dj, 75.80.+q, 77.84.Bw

Magnetoelectric multiferroics are currently attracting
considerable attention on account of their interesting phys-
ics and potential applications [1]. Among these materials,
one of the most studied is the perovskite BiFeO3 (BFO), a
room temperature magnetoelectric multiferroic (ferroelec-
tric and antiferromagnetic) [2,3]. Its lead-free nature and
large remanent polarization [4] have already motivated
Fujitsu to use it as the active layer in prototype ferroelectric
memories [5]; also, sublattice magnetic switching using
voltage has been demonstrated [6], which may find its way
into spintronic applications via exchange bias [7]. The
possible coupling between ferroelectric and antiferromag-
netic domains has triggered a flurry of work on the mor-
phology and functional properties of the domains [6,8–11].
Standard BFO films are generally found to have straight-
walled domains which follow the well-known scaling law
of Landau, Lifshitz, and Kittel (LLK) [12–14], that is,
domain width grows proportionally to the square root of
film thickness [10].

The room-temperature rhombohedral phase is normally
monoclinic for epitaxial thin films, but the monoclinic
distortion is either very small or possibly nonexistent
(being tetragonal instead) below a critical thickness, which
for BFO grown epitaxially on SrTiO3 substrates is of the
order of 100 nm [15]. In this Letter the morphology and
scaling of the domains in the small-thickness regime has
been analyzed in detail, and found to be qualitatively
different from that observed at higher thickness: (i) the
domains are not straight, but irregular in shape, with a
domain wall roughness characterized by a fractal-like
Hausdorff dimension; (ii) the ferroelectric domains are
bigger than those of ‘‘pure’’ (nonmultiferroic) ferroelec-
trics and closer in size to those of magnetic materials,
suggesting strong magnetoelectric coupling at the domain
walls, and (iii) the average domain size appears to depart
from the usual LLK square root dependence on film thick-
ness. The anomalous scaling may be directly related to the

fractal Hausdorff dimension of the walls according to a
simple model.

The thin films of BFO were grown by pulsed laser
deposition on SrTiO3 with a conductive buffer layer of
�La; Sr�MnO3 [16], and the ferroelectric domain morphol-
ogy was studied by way of piezo-response atomic force
microscopy (PFM). The shape of the spontaneous domains
is highly irregular (Fig. 1). Films of 35 nm thickness or less
displayed unit-cell steps in the topography, with the extra
surface roughness likely to be due to adsorbates. Adsor-
bates can substantially modify the depolarization field and
affect the out-of-plane domain morphology [17], as ob-

FIG. 1 (color online). Topography and PFM of domains in
films of 7 nm, 35 nm and 100 nm. Surface roughnesses were,
respectively, 0.2, 0.4, and 3.8 nm. The PFM cantilever was
oriented along [100]. The scale bar is the same along each row.
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served in several of our samples. Accordingly, only in-
plane domains are analyzed here.

Domain periodicity was measured by either Fourier
analysis of the PFM image or by simply counting the
number of domains of a given polarity across a straight
segment. Whenever the two methods could be applied
(Fourier analysis is only possible when the periodicity is
quite regular), they yielded the same results. The average
domain periodicities are plotted in Fig. 2 in a log-log scale
as a function of film thickness. For comparison, equivalent
data for domains in other ferroic systems (ferroelectric or
ferromagnetic) are included. Ferroelectric domains are
generally smaller than ferromagnetic domains [18–21],
but the ferroelectric domains in BFO are noticeably bigger,
and close to the domain size of magnetic Co. This suggests
a higher energy cost of the domain walls [21,22], consis-
tent with a strong magnetoelectric coupling at the wall [6].
This contrasts with the apparently low intrinsic magneto-
electric coupling of the bulk material [23], and underlines
the interest of domain walls as multiferroic entities in their
own right [24].

A least squares fit of the domain period w as a function
of film thickness d yields a power law w � Ad�, with a
scaling exponent � ’ 0:59� 0:08. The data set used for
the analysis is small, and the average domain size is not as
well defined as in stripe domains, so the empirical value
should be treated with caution. Nonetheless, equivalent an-
alyses performed on similar data sets have always yielded
exponents closer to the classic value of 0.5 [10,20]. The
bigger value of � in the BFO films may instead be related
to the irregularity of the domain walls, as discussed below.

Using the program WSxM [25], the ratio of domain
perimeters (P) to areas (A) can be analyzed. The in-plane

Hausdorff dimension of the domain walls (Hk) is extracted
using P / AHk=2; if the domain walls were perfectly
smooth, Hk � 1, otherwise 1 � Hk � 2. Plotting log�P�
vs log�A� for the domains in the different films (Fig. 3),
values of 1:29 � Hk � 1:52 were found [26]. These are
comparable with Hk ’ 1:5 found in written domains of
BFO-doped lead zirconium-titanate (PZT) films [27].

The wall roughness of PFM-written linear domains,
created by alternate applications of negative and positive
voltage (�8 V) to the film surface, was analyzed (Fig. 4)
using the pair-correlation method described by Paruch
et al. [28]. The correlation function of relative displace-
ments essentially measures the local variance of the wall
position from an elastically ideal flat configuration as a
function of the length L along the wall, and is predicted to
show a power-law growth at equilibrium, governed by a
characteristic roughness exponent � . We observe such a
power-law growth at short length scales (L< 100 nm)
followed by a saturation. The value of the roughness
exponent � � 0:5–0:6 is higher than that observed in
PZT [28], and could be an indication of either a lower
dimensionality (being close to the theoretically predicted

FIG. 2 (color online). Periodicity of in-plane domains as a
function of BFO film thickness. The straight line is a least-
squares fit giving a scaling exponent of 0:59� 0:08. We have
also included the domain periodicity of other ferroics found in
the literature.
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FIG. 3 (color online). Above, perimeter as a function of area
for spontaneous domains in the 35 nm sample. The slope of the
log-log plot is related to the Hausdorff dimension: P / AHk=2.
Below, Hausdorff dimension as a function of film thickness.
(Inset) the domain periodicity renormalized as defined by
Eq. (5), yielding a slope � �208� 40 and intercept � 344�
56.
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value of � � 2=3 for a one-dimensional elastic domain
wall in random bond disorder potential), or possibly a
different type of disorder [29]. There are additional self-
consistency checks possible for domain dimensionality
based on the dynamics of domain growth [28,30] and/or
current transients [31,32]. The cause of the domain wall
roughness is as yet unknown; it may be intrinsic, or else
related to a combination of low in-plane anisotropy and
defects -surface texture, vacancies, etc [33]. What interests
us, however, is the effect that such roughness may have on
the domain size scaling.

Smooth-walled domains, whether mosaic-type [14] or
stripe-type (even when they have prefractal size distribu-
tions [34]) scale with the conventional � � 1=2. On the
other hand, the LLK law arises from the need to minimize
the energy of the domains against that of the domain walls,
so changing the ratio of one over the other (according the
Hausdorff dimension) must necessarily affect size scaling.
The energy density of the domains is proportional to their
periodicity w, irrespective of whether they are stripe-type
or mosaic-type [14]:

 Edomain � Uw; (1)

where U is a constant arising from either depolarization,
demagnetization, strain, or a combination of them. The
energy of each wall is equal to its energy density � times
its surface (S), and S is equal to the domain perimeter P
times the domain depth, assumed to be equal to the film
thickness d; therefore E � �Pd. Since the domain perime-
ter scales fractally with the domain size (P � wHk), the
energy is E � �wHkd. The energy density (per unit area of
film) is found multiplying the energy E of each wall by the
number density of domains, which is inversely propor-

tional to the domain area, i.e., N / 1=w2. Therefore,

 Ewalls � �wHk
d

w2 : (2)

Adding (1) and (2) and minimizing with respect to w,
leads to the optimum domain size

 w �
�
�2�Hk�

�
U

�
1=�3�Hk�

d1=�3�Hk� � kd1=�3�Hk�: (3)

It is implicitly assumed that the walls are like ‘‘folded
curtains’’, irregular in the horizontal direction and straight
in the vertical one [28], due to anisotropy in the strength of
the dipole-dipole and elastic interactions. If the walls were
also rough in the vertical direction, they would scale as
dH? , and Eq. (3) would become instead

 w � kdH?=�3�Hk�: (4)

The case H? � Hk � 1 (flat walls) restores the standard
Kittel result � � 1=2.

For the measured values 1:3 � Hk � 1:5, and assuming
H? � 1, Eq. (3) would predict a scaling exponent 0:59 �
� � 0:67, which is bigger than the classic Kittel value of
0.5 and compatible with our experimental exponent �.
Also, since Hk was not the same for all films (Fig. 3), there
is another test of self-consistency: Eq. (3) predicts that

 

w1=�

d
� 2C� CHk; (5)

where C is a constant. This means that a plot of w1=�

d as a
function of Hk should be linear, with the slope half the
value of the intercept at the origin, as approximately ob-
served (inset of Fig. 3).

The present model is in theory valid for any ferroic
(ferroelectric, ferromagnetic or ferroelastic) with fractal
walls, as it relies only on the geometrical scaling of the
domain wall. However, although it is consistent with our
empirical results, we want to emphasize that the robustness
of these is limited by several constraints: (i) strain relaxa-
tion at one end and instrumental precision at the other limit
the range of thickness in which the analysis can be per-
formed, (ii) there is an electronic noise contribution to the
PFM signal which, while we have tried to minimize, may
still add to the apparent roughness of the walls, (iii) there is
a substantial error bar associated with the periodicity of
irregular domains. So, while the model is consistent with
the experimental results, these should be verified by other
techniques (looking at domain dynamics, for example).

It is also worth mentioning that the LLK theory was
originally conceived for thick films. In very thin films the
interaction between the two opposite surfaces [35], dead
layers [36,37] or ferroelastic effects [38–40] can induce a
departure from LLK, often in the form of a divergence in
domain size for very small thickness. On the other hand,
experimentally, for perovskite ferroelectrics the LLK holds
down to smaller thickness than those studied here (Fig. 2);
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FIG. 4 (color online). Correlation function for the roughness of
the written domain walls, measured for a 70 nm thick BFO film.
An average value of the roughness exponent � � 0:56 was
obtained. This higher value of � for BFO compared to that for
PZT suggests either a lower dimensionality in a random bond
pinning scenario, or the presence of stronger individual pinning
centers which could also be responsible for the fractal structure
of the spontaneous domains in the BFO films.
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nor does the domain size in the BFO films tend to diverge,
which also argues against finite thickness effects.

In summary, we have analyzed the domain periodicity
and domain morphology of very thin films of BFO and
found: (i) the spontaneous ferroelectric domains in BFO
are bigger than those in other ferroelectrics of similar
thickness, and close to those of magnetic materials, which
is consistent with a strong magnetoelectric coupling at the
walls; (ii) the domains are irregularly shaped and their
walls can be characterized by a fractal dimension;
(iii) the domain scaling appears to depart from the conven-
tional LLK law; and (iv) since the Hausdorff dimension
affects the scaling between domain area and perimeter, it
should affect domain scaling according to the model pre-
sented. The predictions of the model are consistent with the
experimental results. Specific further tests on the nature
and origin of the inferred fractal dimensionality are sug-
gested, particularly the use of switching current transients
and the study of domain growth dynamics. We hope that
these findings will motivate more research into the physics
of domain walls in ferroic and multiferroic systems.
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[15] H. Béa, M. Bibes, S. Petit, J. Kreisel, and A. Barthélémy,
Philos. Mag. Lett. 87, 165 (2007).
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