
Quantum Kinetic Theory of Phonon-Assisted Excitation Transfer in Quantum Dot Molecules

Emil Rozbicki* and Paweł Machnikowski†

Institute of Physics, Wrocław University of Technology, 50-370 Wrocław, Poland
(Received 22 August 2007; published 16 January 2008)

We present a quantum-kinetic theory of the excitation transfer in a quantum dot molecule. We derive
the consistent Markovian limit for the system kinetics, which leads to a description in terms of a single
transfer rate for weak coupling. We show that the transfer rate is a strongly varying, nonmonotonic
function of the spatial separation and energy mismatch between the dots.
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Current manufacturing technologies allow one to pro-
duce semiconductor structures built of nearly identical
quantum dots (QDs), with the splitting of the ground state
transition energies down to a few meV [1,2]. Since the QDs
forming such structures are electronically coupled [3,4],
they are referred to as quantum dot molecules (QDMs). For
QDMs with separations of several nm, carrier tunneling is
exponentially suppressed [5] and the energetically lowest
states correspond to spatially direct excitons [6]. Such
states are bound by the Coulomb interaction via static
[7–9] and interband [9,10] dipole moments. The latter is
referred to as the Förster interaction, and its signatures
were found, e.g., in a photon-correlation experiment [1].

While the static (‘‘direct’’) dipole coupling preserves the
occupations of the individual QDs, the Förster interaction
provides for a transfer of occupation between the dots. In
the presence of a dissipation channel, this excitation trans-
fer may become irreversible. For confined carriers, the
dissipation is dominated by phonon-related mechanisms.
In spite of the importance of the excitation transfer for
current experiments [1,5,11–14], relatively little theoreti-
cal effort has been devoted to the role of phonons in this
process [15–18] and the existing theory is mostly restricted
to perturbative (Fermi golden rule) approaches [16,18] or
Förster phenomenology [15]. No attempt has been made to
describe the system dynamics in the general case, when the
excitation of one of the QDs does not necessarily corre-
spond to an eigenstate of the unperturbed system and,
therefore, the Fermi golden rule is of no use.

In this Letter we propose a rigorous quantum-kinetic
description of the phonon-assisted Förster transfer of an
exciton in a QDM. As we will show, the general evolution
of the system involves an interplay of coherent dynamics
and relaxation. The main result of the Letter is the con-
sistent Markovian approximation to the system kinetics,
which is particularly useful in the limit of weak coupling.
The resulting transfer rate is a nonmonotonic, oscillating
function of the QD energy mismatch and spatial separation
and cannot be correctly reproduced by the Förster phe-
nomenological approach [19]. Nonetheless, it can still be
estimated using experimentally measurable characteristics
of the QDM. Finally, we show that the transfer may be

much faster than suggested by the existing perturbative
estimates [16].

We consider two flat, cylindrically symmetric, coaxial
QDs, separated by the distanceD along the z axis [see inset
in Fig. 1(c)] and interacting with phonons. The formalism
will be restricted to the subspace spanned by the states j1i,
j2i, corresponding to a single exciton in the ground state of
the ‘‘dot 1’’ and ‘‘dot 2,’’ respectively (with a fixed polar-
ization). We assume that the wave functions of excitons
confined in different dots do not overlap, which excludes
phonon-assisted tunneling. The Hamiltonian of the system
is then H � H0 �HI, where
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FIG. 1. (a),(b) The Bloch sphere representation of the evolu-
tion for two coupling strengths. (c),(d) The corresponding occu-
pation of the ‘‘dot 1’’ as a function of time. The results are
calculated at T � 4 K. Inset in (c): the system geometry. Inset in
(d): the correction to the dipole approximation.
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Here �i are Pauli matrices in the basis of the states j1i, j2i,
�> 0 is the energy mismatch between the dots, V is the
amplitude of the Förster coupling, byk , bk are creation and
annihilation operators for the phonon mode with a wave
vector k, !k is the corresponding frequency, and g�i�k are
exciton-phonon coupling constants.

We assume Gaussian wave functions for electrons
and holes (identical in both dots) of the form  e;h�r� �
expf���x2 � y2�=l2e;h � z

2=l2z	=2g. In the calculations we
will use le � 4:4 nm, lh � 4:0 nm, and lz � 1 nm.

For heavy-hole excitons confined in QDs stacked along z
one has

 V �
e2jaj2

4��0�rD
3

l2

lelh
f�D=l�;

where e is the electron charge, �0 and �r are the vacuum
and relative dielectric constants, l2 � �1=l2e � 1=l2h�

�1, and
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p
[20], where Pcv is the

interband matrix element of the momentum operator, m0

andme are the free and effective electron masses, and Eg is
the band gap. The function f�x� accounts for the correction
to the dipole approximation [16] and can be represented as
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where u�t� � 1� t2 � �2t2 and � � lz=l [see inset in
Fig. 1(d)]. We focus on a self-assembled InAs=GaAs sys-
tem; hence, jaj should lie between the GaAs and InAs
values of 0.6 nm and 1.88 nm, respectively [21]. An
estimate based on the exciton radiative lifetime of 500 ps
[1] yields jaQDj � 0:86 nm. One should note that, in con-
trast to the Förster interaction, the static dipole coupling is
diagonal in the occupation eigenstates and its only effect is
to shift the energy of the biexciton state. Therefore its
presence or absence does not affect the dynamics in the
restricted, single-exciton subspace and is therefore irrele-
vant to the present study.

The most effective interaction between neutral excitons
and phonons is the deformation potential coupling to lon-
gitudinal acoustic modes [22]. For Gaussian wave func-
tions one gets [23] g�0;1�k � gke

�ikzD=2, with

 gk � ��e � �h�
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where �e, �h are the deformation potential constants for
electrons and holes, � is the crystal density, c is the speed
of sound, and v is the normalization volume. We take �e �
�h � 9 eV, � � 5350 kg=m3, c � 5150 m=s, and �r �
10:9.

The common way of describing the evolution of an
interacting carrier-phonon system in a QD is the correla-
tion expansion (CE) technique [24–26]. We have numeri-
cally solved the relevant evolution equations up to the two-

phonon-assisted level [26] in the frequency representation
[27] on a nonuniform grid of 700 points with a higher
density around the resonant frequency and with a fre-
quency cutoff at 20 ps�1. Thus, we treat the problem at a
sufficient level to account for the coherent and nonequilib-
rium phonons, which are important for the carrier-phonon
kinetics in QDs [26]. We assume that initially a single
exciton is localized in the ‘‘dot 1.’’

The evolution of the exciton subsystem in a QDM with
D � 6 nm and � � 2 meV at T � 4 K is represented in
the Bloch sphere picture in Figs. 1(a) and 1(b). The two
values of the Förster coupling V � 0:2 meV and V �
0:5 meV correspond to jaj � 1 nm and jaj � 1:6 nm, re-
spectively. As can be seen in the plots, the system evolution
is a combination of a rotation around a tilted axis, defined
by the eigenstates of H0, and damping resulting from the
interaction with phonons. As a result of the latter, at low
temperatures the system relaxes towards the lower eigen-
state of H0 (with a small correction due to polaron effects).
This evolution is reflected by the decaying occupation of
the initial state [Figs. 1(c) and 1(d)], which has the form of
oscillations around an exponential curve.

For V � �, the lower eigenstate is close to the state j2i
and the transfer to the lower-energy dot is practically in-
distinguishable from exponential, as can be seen in Fig. 2.
Here and henceforth we fix jaj � jaQDj � 0:86 nm. From
the results of the quantum-kinetic calculations presented in
Fig. 2, it is clear that the charge transfer rate is a non-
monotonic, oscillating function of both the energy mis-
match [Fig. 2(a)] and the QD separation [Fig. 2(b)].

In the following, we will derive a simple but highly
accurate description accounting for this behavior. To this
end, we write the time-convolutionless (TCL) evolution
equation [28] for the exciton density matrix in the interac-
tion picture with respect to H0 [Eq. (1)],

 _��t� � �
Z t

0
d�ph�HI�t�; �HI���; ��t� 
 �ph		; (3)

where HI�t� is the interaction Hamiltonian [Eq. (2)] in the
interaction picture and �ph is the phonon density matrix at
the thermal equilibrium. The evolution is conveniently
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FIG. 2. The occupation of the higher energy QD as a function
of time at T � 4 K: (a) D � 8 nm and � as shown;
(b) � � 3 meV and D as shown. Dashed line: the Markov
approximation with renormalized coupling.
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described by writing the state as ��t� � �1=2��1� r�t� �
~�	, where ~� is the vector of Pauli matrices written in the
eigenbasis of H0 (thus r is the Bloch vector in the interac-
tion picture). Then Eq. (3) leads to

 

_r�t� � s�t� � �u�t� � r�t� � v�t�	; (4)

where s�t� � �� sin2� cos2�t; sin2� sin2�t; cos2��,
� � �1=2� arcsin�2V=

���������������������
�2 � 4V2
p

�,
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Z t

0
d�s���R�t� �� � H:c:; (5a)

v�t� � i
Z t

0
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and R�t� is the memory function defined as

 R �t� �
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X
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2
jgkj2��nk � 1�e�i!kt � nkei!kt	;

where nk are phonon occupation numbers. In Fig. 3(a) we
show the initial stage of the decay for � � 2 meV, D �
6 nm, and V � 0:13 meV (a � aQD), comparing the result
from the TCL equations (dashed line) to that obtained by
the CE calculations (solid line). The results are close to
each other, although the TCL method yields a slightly
faster decay.

The next step towards a convenient description of exci-
tation transfer is to consistently approximate the non-
Markovian quantum-kinetic description by Markovian
equations. We represent the memory function as

 R �t� �
Z 1
�1

d!R�!�e�i!t; (6)

where the spectral density of the phonon reservoir
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vanishes at !! 0 and for !� c=lz [Fig. 3(b)]. Here
nB�!� is the Bose distribution. Inserting Eq. (6) into
Eq. (5a) we find for the first component of u�t�

 u1�t� � �2 sin2�
Z 1
�1

d!R�!�
�

sin!��
2 t cos!��

2 t

!��

�
sin!��

2 t cos!��
2 t

!��

�
;

where � �
���������������������
�2 � 4V2
p

=@ is the resonant frequency cor-
responding to the splitting between the eigenstates of H0.
In the long time limit, using the identity sin�xt�=x! ���x�
and repeating the procedure for all the components of u�t�
and v�t� one finds u1;2�t� � �s1;2�t�	, u3�t� � 0, v1;2�t� �
��s2;1�t�
, and v3�t� � �2s3

R
1
�1 d!R�!�=!, where

	 � �R��� � R����	 and 
 � �R��� � R����	.
Finally, we make the rotating wave approximation

(RWA), which, in the present formalism, corresponds to
discarding all the oscillating terms appearing in Eq. (4) in
the Markovian approximation (that is, cos�t! 0,
cos2�t! 1=2, etc.). As a result, one gets

 _r 1;2 � �
�
2
	sin22�r1;2; _r3 � ��sin22��	r3 � 
�;

which means that the system relaxation follows the uni-
versal optical Bloch equations with the rate � �
�sin22�	, determined by the phonon spectral density of
the QDM (note, however, that r represents the system state
in the interaction picture and in the basis of eigenstates of
H0). The system evolution obtained in this approximation
is plotted in Fig. 3(a) (dotted lines). Comparison to the
results of the non-Markovian TCL equations shows that the
Markovian approximation introduces only a minor inac-
curacy. In fact, the discrepancy between the CE results and
the TCL and Markov approximations is mostly due to the
phonon-induced renormalization of the coupling [25]. To
the leading order, the latter consists in reducing the cou-
pling V to ~V � V�1�

R
1
�1 d!R�!�=!

2	. With this cor-
rection, the Markovian approximation yields reasonably
accurate results, as shown in Fig. 2 (dashed line) and Fig. 3
(points).

The rate for the phonon-assisted process is governed, on
the one hand, by the amplitude of the Förster coupling,
which decreases roughly as 1=D3. On the other hand, it is
strongly influenced by the structure of R�!�. In particular,
it has a pronounced minimum whenever � is a multiple of
2�@c=D, which explains the oscillating dependence on
both � and D (see Fig. 4). These oscillations lead to a
strong dependence on the system parameters. For instance,
for D � 6 nm [Fig. 4(a)] the rate drops by 2 orders of
magnitude when the energy mismatch � increases from
1.8 meV to 3.8 meV and then grows again by an order of
magnitude as � further increases by 1 meV. Similar,
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FIG. 3. (a) The initial stage of the transfer from ‘‘dot 1‘‘ at T �
4 K, obtained in different approximations: CE (solid line), TCL
(dashed line), Markov-RWA (dotted line), and Markov-RWA
with renormalized coupling (thick points). (b) The phonon
spectral density of the QDM at T � 4 K.

PRL 100, 027401 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
18 JANUARY 2008

027401-3



although less pronounced, oscillations appear in the de-
pendence on the separation D [Fig. 4(b)].

In general, upon transforming back to the original basis
j1i, j2i and to the Schrödinger picture one obtains a com-
plex evolution as in Figs. 1(a) and 1(b). However, in the
case of jVj � j�j, which is of particular practical impor-
tance, one finds sin2� 
 2V=j�j. Moreover, in this limit
the eigenstates of H0 are very close to j1i and j2i. In this
way one obtains an exponential excitation transfer with the
rate � 
 4�� ~V=��2	. Let us note that this rate cannot be
reproduced within the original Förster phenomenology
[19] based on the spectral overlap of the absorption and
emission spectra, even if the phonon sidebands are in-
cluded in the line shapes. Indeed, the oscillating features
are absent from the phonon side bands of a single dot [22],
as well as of a QDM. The latter follows from the explicit
evolution of the elements of the density matrix related to
the optical polarization for a QDM [29], where no depen-
dence on the distanceD appears. Still, in the weak coupling
limit and for the geometry discussed here, a ‘‘rule of
thumb’’ for estimating the transfer rate from experimen-
tally measurable spectral features can be extracted from the
theory, since the envelope of �1=2�R�!�=!2 corresponds to
the phonon sideband in the normalized spectrum of the QD
optical response [22]. This must be taken at ! � �� and
multiplied by 4�V2 and by the QDM interference factor
2sin2�!D=�2c�	.

In conclusion, we have presented a theory of the
phonon-assisted excitation transfer between quantum
dots. We started from the full quantum-kinetic description
and derived a consistent Markovian approximation, which
becomes particularly simple in the weak coupling limit.
The obtained transfer rates show very strong, nonmono-
tonic dependence on the system parameters. We have also
pointed out that the transfer rate can be deduced from the
optical spectra of the QDs and from the QDM geometry.
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FIG. 4. The rate of phonon-assisted excitation transfer as a
function of the energy mismatch for a few values of the QD
separation D (a) and as a function of D for a few values of �
(b) at T � 4 K.
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