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Changes in the Onsager reaction field are used to account quantitatively for aging (the decrease in the
magnetic susceptibility when cooling in zero field is halted below the glass temperature) and rejuvenation
(the disappearance of aging phenomena on further cooling only to reappear at Tw on heating) that
characterize spin glasses. These effects must be caused by interactions between the spins since, absent the
interactions, the magnetic properties of N spins are just N times the magnetic property of a single spin that
cannot display aging. A spin introduced at an empty site with a nonzero field becomes polarized, and the
polarized spin in turn polarizes its neighbors, thereby changing the local field. This additional field is the
Onsager reaction field. Ma’s theory for the reaction field in spin glasses [PRB 22, 4484 (1980)] has been
extended to provide a spin-glass model that can account for the experimental data.
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There has been an enormous theoretical effort devoted to
spin glasses in the last three decades. Virtually all the work
has been devoted to the droplet or the replica symmetry
breaking models (for a recent review, see Kawashima and
Rieger [1] ). Interestingly, comparison with experiment has
been minimal, and since 1999, when rejuvenation was
discovered neither the droplet nor the replica symmetry
breaking model has been able to account for it. Ma’s
approach does not fit easily into either of these two cate-
gories and has not received the same degree of attention,
but as will be shown below, it can be used to account for
aging and rejuvenation.

Ma’s theory will now be summarized (the details can be
found in [2] ): a random spin distribution interacts via the
dipole or RKKY interaction to provide a fluctuating field at
lattice sites whose average is zero. The field distribution for
a random array of Heisenberg spins has been calculated by
Walker and Walstedt [3], and Ma [2], and is

 P0�h� / �h
2
g � h

2��2: (1)

While Eq. (1) yields the field at an empty lattice site, the
presence of a spin at the site modifies the field because the
spin is polarized, and this in turn polarizes its neighbors
and thereby alters the field. This is the Onsager reaction
field [4]. From Eq. (1) the most probable fields are small
fields around zero. Inclusion of the Onsager field changes
this, developing a hole or cavity in the probability near zero
field.

Ma [2] has calculated the reaction field and its effect on
the decay of a magnetization produced by cooling in a
small magnetic field. Ma’s approach can be summarized as
follows: in addition to the single spins there are ‘‘nuclei’’
of two or more spins that consist of spins that are strongly
coupled because they are very close to each other. The
concentrations of nuclei can be considerable: the concen-
tration of single spins that have no nearest neighbors is
c1 � c�1� c�r, where c is the concentration of magnetic
material and r is the number of nearest neighbors; so the

fraction of the magnetic material that is in clusters of two
or more spins is 1� �1� c�r. For instance, for a CuMn
alloy with 10% Mn, only 28% of the Mn are spins with no
neighbors, and 72% of the Mn are in multispin nuclei.

The nuclei have a net spin and an anisotropy energy that
separates an equilibrium state in a magnetic field from a
metastable equilibrium with the nucleus reversed. It should
be noted that (Ma [2] and Nozieres [5] ) the anisotropy
arises from the interaction of the coupled spins with their
neighbors. Thus there are two fields to consider: a mean
field, h, from all the other spins in the sample, and an
anisotropy field, h�, that must be overcome for the nucleus
to reverse.

Ma uses a pair to estimate the properties of the excited
states of the nucleus whose Hamiltonian is H12 � �Js1 �
s2 � h � �s1 � s2� � h� � �s1 � s2�. For a strongly coupled
pair there will be singlet and triplet states. Ignoring the
singlet states, for J > 0, the energy of the ground state in
zero field is �h�2=J. In a field, h < h�2=J, it is �h�2=J�
Jh2sin2�=h�2. The anisotropy energy is h�2=J, and be-
cause hs�i � hs1 � s2i � 2h�=J is frozen along h� it is
related to the barrier height � (the precise value of �
depends on the behavior of the neighbors), the average
spin of the pair is hsi � 2J�h� �h� � h�h�=h�2	=h�2 

Jh=h�2 � h=�. Ma then extends the analysis to include
strongly and ferromagnetically coupled trios and larger
clusters, and derives a distribution,

 ���� 
 2�
��������������
��=�

p
e���; (2)

where � is a constant, proportional to the concentration of
magnetic material.

During cooling, starting from a temperature high enough
for all the nuclei to be superparamagnetic they will initially
be able to maintain their equilibrium distribution.
Eventually, however, the relaxation rate becomes too
slow for this to be possible, and the grains become blocked.
The temperature at which this occurs, the blocking tem-
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perature, can be defined as that temperature below which a
nucleus flips its magnetization no more than once before a
measurement has been completed. The rate at which the
spin of the nucleus flips is ��1 � !e���=T�, where ! is an
attempt frequency. At the end of the cooling process, if the
rate of cooling is dT

dt � �, ���1dt flips will occur in time

dt, and the condition becomes 1�
RTb
T dT�

�1!e���b=T� �

!��1�TbE2�
�b
Tb
��TE2�

�b
T �	, where Tb is the blocking tem-

perature, and E2�x� is the exponential integral function of

order 2. Using the asymptotic expansion of E2 [6], !
� �

�
T2
b

�b
e���b=Tb� � T2

�b
e���b=T�� � 1, neglecting the second

term for T 
 Tb, �b
Tb
� ln�b

Tb
� ln!� Tb, ! is between about

109 and 1013 Hz; so the value of Tb does not have much
effect on the right-hand side. If the time taken to cool the
sample from Tb to a low temperature is �1000 s, �b

Tb
�

ln�b
Tb
�23, and �

Tb���
� b is roughly constant with a value

lying between about 24 and 34, depending on !, and the
time taken to cool.

Using an ingenious approach Ma then calculates the
contribution of the blocked nuclei to the reaction field,
with the field distribution becoming P�h� � P0�h�C�h�,
where C�h� is the cavity factor � exp�h2=2�Tb��� �
�=2Tb���	. Ma assumes that all nuclei block at Tg. This
is clearly a drastic oversimplification and will not be made
here. Furthermore, on heating the blocking temperatures of
the nuclei that have relaxed are replaced by the sample
temperature, and the cavity factor expression becomes:
 

C�h;T�� exp
�

h2

2�Tb���
�

�

2Tb���

�
exp

�
�!texp

�
�

�

T

��

�exp
�
h2

2�T
�

�

2T

��
1�exp

�
�!texp

�
�

�

T

���
:

(3)

If the sample has been cooled to a low temperature in
zero field, and a small field, ha, is applied, the cavity factor
becomes C�h� ha; T� and the sample acquires a moment
that increases as it is heated, and the nuclei unblock. If it
has been heated to a temperature T for a time t, the
unblocked nuclei and the n neighbors will acquire a mo-
ment. The time dependent moment acquired after zero field
cooling to a temperature T0, and heating to T for a time t,
becomes
 

M 
 a
ha
T

Z ��Tg�

�b�T0�
d������1� e�!te

���=T�
�

�
Z �

0
h2

�
h2

�2 �
n
4

�
dhP0�h�C�h; T�; (4)

where a is a constant, and Tg is the temperature of the
maximum in the magnetization acquired on heating in ha.
The integral over h cuts off at � because if h is larger than
� the moment of the cluster will reverse immediately. The

double exponential changes very rapidly with �
T and a

good approximation, that is often used [2], is that �1�
e�!te

���=T�
� � 1 if �

T � ln!t and 0 otherwise (but note that
rejuvenation takes place over a small temperature range; so
this approximation cannot be used when discussing it),
with Eq. (1)

 M 
 a
ha
T

Z T ln!t

0
d�����H���; (5)

where H��� �
R

�
0 h

2�h
2

�2 �
n
4�dh�h

2
g � h

2��2�

e�h
2=2�Tb���	���=2Tb���	.
If M is measured while heating, t becomes an effective

time at the measurement temperature. Using arguments
identical to those in the blocking temperature discussion
t 
 T

� , where � is the heating rate.
The local field distribution has been measured by de

Vegvar and Fulton [8] in CuMn, who obtain P�h� �
�4

����
w
p

=���h=hg�2�w� �h=hg�2	�2, where hg � kTg=�,
with k Boltzman’s constant, and � the Mn magnetic mo-
ment. w is an adjustable width; de Vegvar and Fulton
choose w � 2 in order to fit their data. hg can be very
large, in de Vegvar and Fulton’s samples, with 0.1% Mn, Tg
was 1.8 K, and hg was 0.84 T. For the materials considered
here Tg is an order of magnitude greater, and hg is much
larger than any anisotropy fields; so h can be neglected in
comparison with hg, and the integral over h becomes

 

H��� � �4
����
w
p

=��h�2
g

�
Z �

0
h2

�
h2

�2 �
n
4

�
dhe�h

2=2�Tb���	���=2Tb���	; (6)

with �=Tb��� � b 
 constant, and h=� � x,
H��� � �4

����
w
p

=��h�2
g �3e��b=2�

R
1
0 x

2�x2� n
4�dxe

�b=2��x2�1�.
The integrals are integral representations of the con-
fluent hypergeometric function [6], and H��� �

�4
����
w
p

=��h�2
g �3 e��b=2�

2 � ��1:5�
��2:5���1�M�2:5;1:5; b2� �

n
4

��0:5�
��1:5���1� �

M�1:5;0:5; b2�	. The recurrence relations for these functions
[7] can be employed to obtain H��� � �4

����
w
p

=��h�2
g �3 b

8 .
With Eq. (2), the magnetization becomes

 M 
 A
ha
T

Z �b�T�

�b�T0�
d��7=2e���

� A
ha
T

Z T ln!T
�

bT0

d��7=2e���; (7)

where A is a constant, and T0 is the temperature at which ha
is turned on and heating started. Performing the integration
we obtain
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 M 
 A�3=2 ha
T

�
�
�
9

2
; �T ln

!T
�

�
� �

�
9

2
; �bT0

��

for T < Tg;

M 
 A�3=2 ha
T

�
�
�
9

2
; �Tg ln

!Tg
�

�
� �

�
9

2
; �bT0

��

for T > Tg;

(8)

where ��n; x� is the incomplete � function. Equation (7) is
compared with results obtained by Kenning et al. [9] in
Fig. 1.

If cooling is halted for a time tw at a temperature Tw the
distributions of grains with blocking temperatures between
Tw and Twb�1 ln!tw will be reset to the equilibrium dis-
tribution corresponding to Tw, and Eq. (4) becomes, with
Cw�h; T� equal to Eq. (3) with Tb replaced by Tw

 Mw�a
ha
T

Z �b�Tw�

�b�T0�
d������1�e�!te

���=T�
�
Z �

0
h2dhP0�h�

�
h2

�2�
n
4

�
C�h;T��a

ha
T

Z Tw ln!tw

�b�Tw�
d������1�e�!te

���=T�
�

�
Z �

0
h2dhP0�h�

�
h2

�2�
n
4

�
Cw�h;T��a

ha
T

Z �b�Tg�

Tw ln!tw
d������1�e�!te

���=T�
�
Z �

0
h2dhP0�h�

�
h2

�2�
n
4

�
C�h;T� (9)

When Mw is subtracted from M, the first and third
integrals in Eq. (9) cancel, and the moment is decreased
by �M � a haT

RTw ln!tw
�b�Tw�

d������1� e�!te
���=T�
�Hw,

where Hw �
R

�
0 h

2dhP0�h��e
�h2=2�Tb���	���=2Tb���	 �

e�h
2=2�Tw����=2Tw��e�!te

���=T�
. Following the previous pro-

cedure we obtain Hw 

��bTw

8Tw
e�!te

���=T� 4
�

����
w
p �3

h2
g

, and

 �M 
 A
ha
T

Z Tw ln!tw

bTw

�
�

bTw
� 1

�
��7=2�e����1

� e�!te
���=T�
�e�!te

���=T�
: (10)

Integrating by parts, �M 
 A�3=2 ha
T �

1
�bTw

��11
2 ; x� �

��92 ; x�	 �1 � e�!te
��x=T�
�e�!te

��x=T�
j
�Tw ln!tw
�bTw

� A�3=2 ha
T �R�Tw ln!tw

�bTw
� 1
�bTw

��11
2 ; x� � ��92 ; x�	

@
@x ��1 � e�!te

��x=�T�
� �

e�!te
��x=�T�

	. Numerical evaluation reveals that the remain-
ing integral makes a negligible contribution, and

 

�M 
 A�3=2 ha
T

�
g
�
1� e�!te

��Tw ln!tw=T�
	

� e�!te
��Tw ln!tw=T���1�e�!te

��bTw=T� �e�!te
��bTw=T�

�
; (11)

where g �
1

�bTw
��11

2 ;�Tw ln!tw����
9
2;�Tw ln!tw�

1
�bTw

��11
2 ;�bTw����

9
2;�bTw�

. Figure 2 com-

pares Eq. (11) with experimental results published by
Mathieu et al. [10]. The value of g was calculated approxi-
mately to be 0.1, and ! was set at 1012 Hz. Mathieu et al.
[10] remark that it is important to make the cooling and
heating rates equal, i.e., b � ln!t; however, if this was
done the minimum in the moment difference was �1 K
off; in order for it to occur at Tw it was necessary to make
the cooling rate 1.2% slower than the heating rate. Such a
sensitivity to the difference in the two rates could be a
subject of future research.

Assemblies of magnetic nanoparticles can also display
the spin-glass effects of aging and rejuvenation [11–13]
and have been called ‘‘superspin glasses’’. The analysis
presented here can also be applied to them, and this is
underway at present. However, there is an important dif-

FIG. 1 (color online). � mark the magnetization in a 50 G field
for Cu0:94Mn0:06 taken from measurements by Kenning et al. [9],
compared with Eq. (8).

FIG. 2 (color online). � mark the difference between the
magnetization measured on heating a sample of Ag-11% Mn
after cooling in zero field and that for which a wait of 9000 s
took place at 27 K plotted against the measurement temperature
divided by 27 K. From Mathieu et al. [10]. The line was
calculated using Eq. (11).
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ference: whereas Ma’s nuclei and neighbors form the
clusters with anisotropy barriers that are responsible for
the spin-glass phenomena, in the other case the clusters are
the particles themselves. The energy barrier for nanomag-
nets is proportional to their volume; so the barrier height
distribution for nanoparticles depends on their size distri-
bution which has a maximum of many nanometers and
depends on how the particles were produced. The nano-
particle size distribution leads to a much broader minimum
in the plot of moment difference against temperature for
the rejuvenation data.

Finally, while Ma’s calculation [2] was specifically for
Heisenberg spins, a similar approach yields similar results
for Ising spins, and was, in fact, used by Cyrot [14] in the
first application of the Onsager theory to spin glasses.

In conclusion, a theory has been described that uses the
Onsager reaction field to account for aging and rejuvena-
tion effects in spin glasses. The Onsager reaction field is
produced by blocked clusters in metastable states. The
number of clusters in metastable states is frozen in at their
blocking temperatures during cooling. If the cooling is
interrupted for a time at an intermediate temperature Tw
a small number of clusters frozen during cooling to Tw can
relax. When cooling is resumed their blocking temperature
will now be Tw, and the altered distribution will lead to an
altered reaction field and susceptibility. However, this
change is confined to the clusters blocked during cooling
to Tw that have been able to relax during the waiting time,

and this corresponds to a narrow temperature interval
around Tw; at temperatures below and above this interval
the susceptibility is not affected.

The author wishes to thank NSERC of Canada for its
support.
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