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Exact formulas for the singularities of the dynamical structure factor, Szz�q;!�, of the S � 1=2 xxz spin
chain at all q and any anisotropy and magnetic field in the critical regime are derived, expressing the
exponents in terms of the phase shifts which are known exactly from the Bethe ansatz solution. We also
study the long-time asymptotics of the self-correlation function h0jSzj�t�S

z
j�0�j0i. Utilizing these results to

supplement very accurate time-dependent density matrix renormalization group, for short to moderate
times, we calculate Szz�q;!� to very high precision.
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The ‘‘xxz’’ S � 1=2 spin chain, with Hamiltonian

 H � J
XL
j�1

�SxjS
x
j�1 � S

y
jS

y
j�1 � �SzjS

z
j�1 � hS

z
j�; (1)

is one of the most studied models of strongly correlated
systems. It is equivalent by a Jordan-Wigner transforma-
tion to a model of interacting spinless fermions, with the
corresponding Fermi momentum kF � ��1=2� h0jSzjj0i�
[1]. The model with � � 1 describes Heisenberg antifer-
romagnets. The regime 0<�< 1 is also of experimental
interest; for example, the model with � � 1=2 can be
realized in S � 1=2 spin ladders near the critical field
[2]. In optical lattices, it should be even possible to tune
the anisotropy � and explore the entire critical regime [3].

While some aspects of the model have been solved for
exactly by Bethe ansatz [4], it has been very difficult to
obtain correlation functions that way. Field theory (FT)
methods give the low-energy behavior at wave vectors near
0 and 2kF [1]. From the experimental viewpoint [5], a
relevant quantity is the dynamical structure factor

 Szz�q;!� �
XL
j�1

e�iqj
Z �1
�1

dtei!th0jSzj�t�S
z
0�0�j0i: (2)

This is the Fourier transform of the density correlation
function in the fermionic model. For � � 1 and h � 0,
the exact two-spinon contribution to Szz�q;!� was ob-
tained from the Bethe ansatz [6], partially agreeing with
the Müller conjecture [7]. More recently a number of new
methods have emerged which now make this problem
much more accessible. These include time-dependent den-
sity matrix renormalization group (DMRG) [8–10], calcu-
lation of form factors from Bethe ansatz [11,12], and new
field theory approaches which go beyond the Luttinger
model [13,14]. The results point to a very nontrivial line
shape at zero temperature for Szz�q;!� of the xxz model
[14] and of one-dimensional models in general [13]. In the
weak coupling limit �� 1 and for small q, the singular-
ities at the thresholds of the two-particle continuum have

been explained by analogy with the x-ray edge singularity
in metals [13].

In this Letter we combine the methods of Ref. [13] with
the Bethe ansatz to investigate the singularity exponents of
Szz�q;!� for the xxzmodel for finite interaction strength �
and general momentum q. In addition, we determine the
exponents of the long-time asymptotics of the spin self-
correlation function, which is not dominated by low-
energy excitations. We check our predictions against high
accuracy numerical results calculated by DMRG.

In the noninteracting, � � 0 case, only excited states
with a single particle-hole pair contribute to Szz�q;!�. All
the spectral weight is confined between the lower and
upper thresholds !L;U�q� of the two-particle continuum.
The choices of momenta corresponding to the thresholds
depend on both kF and q. For zero field, kF � �=2, !L�q�
for any q > 0 is defined by the excitation with a hole at
k1 � �=2� q and a particle right at the Fermi surface (or
a hole at the Fermi surface and a particle at k2 � �=2� q),
while !U is defined by the symmetric excitation with a
hole at k1 � �=2� q=2 and a particle at k2 � �=2� q=2.
For finite field and q < j2kF � �j, !L;U�q� are defined by
either a hole at kF and a particle at kF � q or a hole at kF �
q and a particle at kF � q. For h � 0 and q > j2kF � �j,
there is even a third ‘‘threshold’’ between !L and !U,
where Szz�q;!� has a step discontinuity (see [7] ).

For � � 0, Szz�q;!� exhibits a tail associated with
multiple particle-hole excitations [14]. However, the
thresholds of the two-particle continuum are expected to
remain as special points at which power-law singularities
develop [13]. In order to describe the interaction of the
high-energy particle and/or hole with the Fermi surface
modes, we integrate out all Fourier modes of the fermion
field  �x� except those near 	kF and near the momentum
of the hole, k1, or particle, k2, writing

  �x� 
 eikFx R � e�ikFx L � eik1xd1 � eik2xd2: (3)

Linearizing the dispersion relation about 	kF we obtain
relativistic fermion fields which we bosonize in the usual
way [1]. We also expand the dispersion of the d1;2 particles
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around k � k1;2 up to quadratic terms. This yields the
effective Hamiltonian density
 

H �
X
��1;2

dy�

�
"� � iu�@x �

@2
x

2m�

�
d�

�
v
2
��@x’L�2 � �@x’R�2� � V12d

y
1d1d

y
2d2

�
1����������

2�K
p

X
��1;2

���R@x’R � �
�
L@x’L�d

y
�d�: (4)

This Hamiltonian describes a Luttinger liquid coupled to
one or two mobile impurities [15,16]. In the derivation of
Eq. (4) from Eq. (1), we drop terms of the form �dy�d��2

because we only consider processes involving a single d1

and/or a single d2 particle. Here ’R;L are the right and
left components of the rescaled bosonic field. The long
wavelength fluctuation part of Szj is given by Szj 
�������������
K=2�

p
�@x’R � @x’L�. The spin velocity v and

Luttinger parameter K are known exactly from the Bethe
ansatz [4]. For zero field, v � ��=2�

���������������
1� �2
p

= arccos�
and K � �2� 2 arccos���=����1 (we set J � 1). To first
order in �, the coupling constants describing the scattering
between the d particles and the bosons are ��R;L � 2��1�
cos�kF � k���. The direct d1-d2 interaction V12 is also of
order �. The exact values of �R;L play a crucial role in the
singularities and will be determined below.

We may eliminate the interaction between the d particles
and the bosonic modes by a unitary transformation

 U � exp
�
i
X
�

Z dx����������
2�K
p ���R’R � �

�
L’L�d

y
�d�

�
; (5)

with parameters ��R;L � ��R;L=�v� u��. In the resulting
Hamiltonian ~H � UyHU, ’R;L are free up to irrelevant
interaction terms [15]. As in the x-ray edge problem, ��R;L
may be related to the phase shifts at the Fermi points due to
the creation of the high-energy d� particle.

Fortunately, we have access to the high-energy spectrum
of the xxz model by means of the Bethe ansatz. Following
the formalism of Ref. [16], we calculate the finite size
spectrum from the Bethe ansatz equations with an impurity
term corresponding to removing (adding) a particle with
dressed momentum k1 � k��1� [k2 � k��2�], where �1;2

are the corresponding rapidities. The term of O�1� yields
"� � ��k��, the dressed energy of the particle. For zero
field, we have the explicit formula ��k� � �v cosk. The
excitation spectrum for a single impurity to O�1=L� reads

 �E�
2�v
L

�
1

4K
��N�n�imp�

2�K�D�d�imp�
2�n��n�

�
;

(6)

with a conventional notation for �N, D, and n	 [4]. The
phase shifts n�imp and d�imp are given by

 n�imp �
Z �B
�B

d���imp���; (7)

 d�imp �
Z �B
�1

d�
��imp���

2
�
Z �1
B

d�
��imp���

2
; (8)

where B is the Fermi boundary and ��imp��� is the solution
to the integral equation

 ��imp��� �
Z �B
�B

d�0

2�
��imp��

0�
d���� �0�

d�
�

�����
2�

; (9)

where ���� � i log�sinh�i� � ��= sinh�i� � ���, with
� � � cos� , is the two-particle scattering phase [4], and
�1;2��� � �d���� �1;2�=d�. The spectrum of Eq. (6)
describes a shifted c � 1 conformal field theory. The scal-
ing dimensions of the various operators can then be ex-
pressed in terms ofK, n�imp, and d�imp. In the effective model
(4), the shift is introduced by the unitary transformation of
Eq. (5), which changes the boundary conditions of the
bosonic fields. The equivalence of the two approaches
allows us to identify

 ��R;L=� � n�imp 	 2Kd�imp: (10)

The phase shifts can be determined analytically for zero
magnetic field. In this case, B! 1 and we have d�imp � 0.
Moreover, by integrating Eq. (9) over � we find

 n1;2
imp � ���1�=�����1�� � 	�1� K�: (11)

Once the exact phase shifts are known, the exponent
for the (lower or upper) threshold determined by a
single high-energy particle can be calculated straightfor-
wardly. For example, for a lower threshold defined by a
deep hole, !L�q� � ���kF � q�, the correlation function
hdy1 R�t; x� 

y
Rd1�0; 0�i can be factorized into a free d1

propagator and correlations of exponentials of ’R;L.
After Fourier transforming, we find that near the lower
edge Szz�q;!� 
 �!�!L�q��

�	 with exponent [17]

 	 � 1� �1� n1
imp�

2=2K � 2K�1=2� d1
imp�

2: (12)

For h! 0, we use Eq. (11) and obtain

 	 � 1� K; �h! 0� (13)

independent of the momentum of the hole. This form for
the lower edge exponent had been conjectured long ago by
Müller et al. [7]. It agrees (up to logarithmic corrections)
with the exponent of the two-spinon contribution to
Szz�q;!� for the Heisenberg point (K � 1=2) [6].

The general result of Eq. (12) is consistent with the weak
coupling expression for	 [13]. To first order in �, Eq. (12)
reduces to

 	 �
�1
R

��v� u1�
�

2��1� cosq�
��sinkF � sin�kF � q��

: (14)

For kF � �=2, we expand for q� kF and get 	 �
m�q=�, where m � �coskF��1 (cf. [13] ). For kF � �=2,
we obtain 	 � 2�=�, which is 1� K to O���. Note the
cancellation of the q dependence of �1

R and v� u1 in the
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latter case. Momentum-independent exponents have also
been derived for the Calogero-Sutherland model [18].

We now consider a threshold defined by high-energy
particle and hole at k1;2 � �=2� q=2. The relevant corre-
lation function is the propagator of the transformed dy2d1.
For simplicity, here we focus on the zero field case, in
which "2 � �"1 � v sin�q=2�, u2 � u1, and �m2 �
m1 � �v sin�q=2���1. Particle-hole symmetry then implies
that �1

R;L � �2
R;L and dy2d1 is invariant under the unitary

transformation of Eq. (5). In the noninteracting case, there
is a square-root singularity at the upper threshold due to the
divergence of the joint density of states: Szz�q;!� /������������������������������������
m1=�!U�q� �!�

p
for ! � !U�q� � 2v sin�q=2� [7].

For � � 0, we need to treat the direct interaction V12

between the particle and the hole, which is not modified
by U. This problem is analogous to the effect of Wannier
excitons on the optical absorption rate of semiconductors
[19,20]. This simple two-body problem can be solved
exactly for a delta function interaction. The result is that
the upper edge exponent changes discontinuously for � �

0: the square-root divergence turns into a universal (for any
q and �) square-root cusp, Szz�q;!� /

������������������������
!U�q� �!

p
. This

behavior contradicts the Müller ansatz [7], but is consistent
with the analytic two-spinon result for � � 1 [6]. Unlike
the original exciton problem, a bound state only appears
for V12 < 0 (�< 0) [21], because the particle and hole
have a negative effective mass. For � � 0, the upper edge
cusp should intersect a high-frequency tail dominated by
four-spinon excitations as proposed in [22]. This picture
must be modified for h � 0, since then �1

R;L � �2
R;L and

one needs to include the bosonic exponentials. The upper
edge singularity then becomes � and q dependent. The
general finite field case, including the middle singularity
[7] for q > j2kF � �j, will be discussed elsewhere.

We can apply the Hamiltonian of Eq. (4) to study the
self-correlation function G�t�  h0jSzj�t�S

z
j�0�j0i. Even in

the noninteracting case, the long-time asymptotics is a
high-energy property, since it is dominated by a saddle
point contribution with a hole at the bottom and a particle
at the top of the band [23]. In this case, k1 � 0 and k2 � �
and d1;2

imp vanish by symmetry (��R � ��L). Here we restrict
to zero field, but the method can be easily generalized. For
h � 0 and � � 0, G�t� takes the form

 G�t� 
 B1
e�iWt

t

� B2

e�i2Wt

t
2
�
B3

t�
�
B4

t2
; (15)

where W � ���0� � v. The last two terms are the stan-
dard low-energy contributions, with � � 2K. The ampli-
tudes B3 and B4 are known [24]. The first term is the
contribution from the hole at the bottom of the band and
the particle at kF � �=2, with exponent

 
 � �1� K�=2� �1� n1
imp�

2=2K � K � 1=2: (16)

The term oscillating at 2W comes from a hole at k � 0 and
a particle at k � �. For � � 0, we have 
2 � 1. The

exponent 
2 is connected with the singularity at the upper
threshold of Szz�q;!� by G�t� 


R
d!ei!t

R
dqSzz�q;!�

for q � � and ! � !U��� � 2v. Because of the disconti-
nuity of the exponent at !U, 
2 jumps from 
2 � 1 to

2 � 2 for any nonzero �. This behavior should be ob-
served for t� 1=�m1V2

12� 
 1=�2. As a result, the asymp-
totics of G�t� is governed by the exponent 
< 3=2 for
0<�< 1. For �< 0, we must add to Eq. (15) the con-
tribution from the bound state.

We can also study Szz�q;!� with time-dependent
DMRG (tDMRG) [8,9]. The tDMRG methods directly
produce Szz�x; t� and its spatial Fourier transform Szz�q; t�
for short to moderate times. This information nicely com-
plements the asymptotic information available analyti-
cally. The DMRG calculation begins with the standard
finite system calculation of the ground state ��t � 0� on
a finite lattice of typical length L � 200–400, where a few
hundred states are kept for a truncation error less than
10�10. One of the sites at the center of the lattice is selected
as the origin, and the operator Sz0 is applied to the ground
state to obtain a state  �t � 0�. Subsequently, the time
evolution operator for a time step , exp�i�H � E0��,
where E0 is the ground state energy, is applied via a fourth
order Trotter decomposition [10] to evolve both ��t� and
 �t�. At each DMRG step centered on site j we obtain a
data point for the Green’s function G�t; j� by evaluating
h��t�jSzjj �t�i. As the time evolution progresses, the trun-
cation error accumulates. The integrated truncation error
provides a useful estimate of the error, and so longer times
require smaller truncation errors at each step, attained by
increasing the number of states kept m. The truncation
error grows with time for fixed m, and is largest near the
center where the spin operator was applied. We specify the
desired truncation error at each step and choose m to
achieve it, within a specified range. Typically for later
times we have m � 1000. Finite size effects are small for
times less than �L=2�=v. We are able to obtain very accu-
rate results for G�t; j�, with errors between 10�4 and 10�5,
for times up to Jt
 30–60.

For Jt > 10–20, we find the behavior of Szz�q; t� and
G�t� is well approximated by asymptotic expressions, de-
termined by the singular features of Szz�q;!� and G�!�.
By utilizing the leading and subleading terms for each
singularity, we have been able to fit with a typical error
in Szz�q; t� or G�t� for Jt
 20–30 between 10�4 and 10�5.
We can fit with the decay exponents determined analyti-
cally or as free parameters to check the analytic expres-
sions. Table I shows the comparison between the exponents
for G�t� extracted independently from the DMRG data and
the FT predictions. In all cases the agreement is very good.
By smoothly transitioning from the tDMRG data to the fit
as t increases, we obtain accurate results for all times. A
straightforward time Fourier transform with a very long-
time window yields very accurate high resolution spectra.
Examples of line shapes for Szz�q;!� obtained this way are
shown in Fig. 1. We also did DMRG for the hole Green’s
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function for the fermionic model corresponding to Eq. (1),
obtaining good agreement with the predicted singularities
from the x-ray edge picture.

We have not seen any exponential damping of the 
2

term in G�t� for �> 0. This suggests that the singularity at
the upper edge is not smoothed out in the integrable xxz
model, even when the stability of the excitation is not
guaranteed by kinematic constraints [25]. Integrability
also protects the singularity at !U for finite field, as
implied by the conformal field theory form of the spectrum
in Eq. (6).

In conclusion, we presented a method to calculate the
singularities of Szz�q;!� for the xxz model. The exponents
for general anisotropy, magnetic field and momentum can
be obtained by solving the Bethe ansatz equations which
determine the exact phase shifts. For the particle-hole
symmetric zero field case, we showed that the lower edge
exponent is q independent and the (‘‘excitonlike’’) upper

edge has a universal square-root singularity. The combina-
tion of analytic methods with the tDMRG overcomes the
finite t limitation on the resolution of the tDMRG and can
be used to study dynamics of other one-dimensional sys-
tems (integrable or not).
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Mod. Phys. 77, 259 (2005).

[9] S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401
(2004); A. J. Daley et al., J. Stat. Mech. (2004) P04005.

[10] A. E. Feiguin and S. R. White, Phys. Rev. B 72, 020404(R)
(2005).

[11] N. Kitanine, J. M. Maillet, and V. Terras, Nucl. Phys.
B554, 647 (1999).

[12] J.-S. Caux and J. M. Maillet, Phys. Rev. Lett. 95, 077201
(2005).

[13] M. Pustilnik, M. Khodas, A. Kamenev, and L. I. Glazman,
Phys. Rev. Lett. 96, 196405 (2006).

[14] R. G. Pereira et al., Phys. Rev. Lett. 96, 257202 (2006).
[15] L. Balents, Phys. Rev. B 61, 4429 (2000).
[16] Y. Tsukamoto, T. Fujii, and N. Kawakami, Phys. Rev. B

58, 3633 (1998).
[17] After this Letter was accepted we learned of the results of

V. Cheianov and M. Pustilnik (private communication);
arXiv:0710.3589. We have checked that their exponent is
exactly the same as ours for all q, �, and h � 0.

[18] M. Pustilnik, Phys. Rev. Lett. 97, 036404 (2006).
[19] G. D. Mahan, Many Particle Physics (Kluwer/Plenum,

New York, 2000).
[20] T. Ogawa, J. Phys. Condens. Matter 16, S3567 (2004).
[21] V. S. Viswanath et al., Phys. Rev. B 51, 368 (1995).
[22] J.-S. Caux and R. Hagemans, J. Stat. Mech. (2006)

P12013.
[23] J. Sirker, Phys. Rev. B 73, 224424 (2006).
[24] S. Lukyanov and V. Terras, Nucl. Phys. B654, 323

(2003).
[25] M. Khodas et al., Phys. Rev. B 76, 155402 (2007).

TABLE I. Exponents for the spin self-correlation function G�t�
for h � 0. The parameters W, 
, 
2, and � were obtained
numerically by fitting the DMRG data according to Eq. (15).
These are compared with the corresponding FT predictions (with
v and K taken from the Bethe ansatz).

� W v 
 1
2� K � 2K 
2

0 1 1 1.5 1.5 2 2 1 1
0.125 1.078 1.078 1.451 1.426 1.954 1.852 1.761 2
0.25 1.153 1.154 1.366 1.361 1.811 1.723 2.034 2
0.375 1.226 1.227 1.313 1.303 1.694 1.607 2.000 2
0.5 1.299 1.299 1.287 1.25 1.491 1.5 2.120 2
0.75 1.439 1.438 1.102 1.149 1.324 1.299 2.226 2

0.8 1 1.2 1.4 1.6 1.8
ω

0

5

S(
q=

π/
2,

ω
)

∆ = −0.25
∆ = 0
∆ = 0.125
∆ = 0.25
∆ = 0.5

FIG. 1 (color online). DMRG results for Szz�q;!� vs ! for
q � �=2, h � 0, and several values of anisotropy �. The line
shapes for �> 0 show a divergent x-ray type lower edge and a
universal square-root cusp at the upper edge. The curve for �<
0 shows a bound state above the upper edge. The width of the
peak is very small for small j�j.

PRL 100, 027206 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
18 JANUARY 2008

027206-4


