
Quantum-Mechanically Induced Asymmetry in the Phase Diagrams of Spin-Glass Systems

C. Nadir Kaplan1 and A. Nihat Berker1,2,3
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The spin-1=2 quantum Heisenberg spin-glass system is studied in all spatial dimensions d by
renormalization-group theory. Strongly asymmetric phase diagrams in temperature and antiferromagnetic
bond probability p are obtained in dimensions d � 3. The asymmetry at high temperatures approaching
the pure ferromagnetic and antiferromagnetic systems disappears as d is increased. However, the
asymmetry at low but finite temperatures remains in all dimensions, with the antiferromagnetic phase
receding from the ferromagnetic phase. A finite-temperature second-order phase boundary directly
between the ferromagnetic and antiferromagnetic phases occurs in d � 6, resulting in a new multicritical
point. In d � 3, 4, 5, a paramagnetic phase reaching zero temperature intervenes asymmetrically between
the ferromagnetic and reentrant antiferromagnetic phases. There is no spin-glass phase in any dimension.
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A conspicuous finite-temperature effect of quantum me-
chanics is the critical temperature differentiation between
ferromagnetic and antiferromagnetic systems [1–4]. This
is a contrast to classical systems where, e.g., on loose-
packed lattices ferromagnetic and antiferromagnetic sys-
tems are mapped onto each other and therefore have the
same critical temperature. We find that this quantum effect
is compounded and even more robust in spin-glass sys-
tems, which incorporate the passage from ferromagnetism
and antiferromagnetism via quenched disorder.

Thus, in the present work, the phase diagrams of the
spin-1=2 quantum Heisenberg spin-glass systems are cal-
culated in all dimensions d � 3. In the space of tempera-
ture T and concentration p of antiferromagnetic bonds,
remarkably asymmetric phase diagrams are obtained, in
very strong contrast to the corresponding classical systems.
Whereas, in the limit of d! 1, the differentiation of the
critical temperatures of the ferromagnetic and antiferro-
magnetic pure systems disappears, the Tp phase diagrams
remain strongly asymmetric at low but finite temperatures,
where quantum fluctuations remain dominant independent
of dimensionality. A direct second-order phase boundary
between ferromagnetic and antiferromagnetic phases, also
not seen in isotropic classical systems, is found in d > 5. In
lower d, a paramagnetic phase intervenes between the
ferromagnetic and antiferromagnetic systems. Our calcu-
lation is an approximation for hypercubic lattices and,
simultaneously, a lesser approximation for hierarchical
lattices [5–15].

The spin-1=2 quantum Heisenberg spin-glass systems
have the Hamiltonian ��H �

P
hijiJijsi � sj �P

hiji � �H �i; j�, where hiji denotes a sum over pairs of
nearest-neighbor sites. Jij is equal to the ferromagnetic
value of J > 0 with probability 1� p and to the antiferro-
magnetic value of �J < 0 with probability p. We solve
this model by extending the Suzuki-Takano rescaling
[3,4,16–24] to nonuniform systems and to length-rescaling

factor b � 3, necessary for the a priori equivalent treat-
ment of ferromagnetism and antiferromagnetism, followed
by the essentially exact treatment [25,26] of the quenched
randomness giving the nonuniformity. In one dimension,

 Tr �j;k�e
��H � Tr�j;k�e

P
4n
i
f��H �i;j���H �j;k���H �k;l�g

’
Y4n

i

tr�j;k�ef��H �i;j���H �j;k���H �k;l�g

�
Y4n

i

e��
0H 0�i;l� ’ e

P
4n
i
f��0H 0�i;l�g

� e��
0H 0

; (1)

where the sums and products i are over every fourth spin
along the chain, the traces are over all other spins, and
��0H 0 is the renormalized Hamiltonian. Thus, the com-
mutation rules are correctly accounted for within four-site
segments, at all successive length scales in the iterations of
the renormalization-group transformation. The trace ‘‘tr’’
is performed by quantum algebra, as given below.

The rescaling is extended to dimensions d > 1 by bond-
moving, namely, by adding bd�1 interactions resulting
from the decimation of Eq. (1), to obtain the renormalized
interaction strength J0i0j0 � R�fJijg�, where fJijg includes bd

interactions of the unrenormalized system. The interaction
constant values fJijg are distributed with a quenched proba-
bility distribution P �Jij� [25,26], which starts out as a
double-delta function but quickly becomes complicated
under its renormalization-group transformation, given by
the convolution P 0�J0i0j0 � �

R
�
Qi0j0

ij dJijP �Jij�	��J
0
i0j0 �

R�fJijg�	. This equation actually involves bd convolutions
(for example, 729 convolutions for the d � 6 system dis-
cussed below), which are constituted of triplet convolu-
tions of interactions in series (decimation) and pairwise
convolutions of interactions in parallel (bond-moving).
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The quenched probability distribution P �Jij� is kept nu-
merically in terms of histograms. The number of histo-
grams multiplicatively increases under rescaling, until a
calculationally acceptable maximum is reached. After this
point, the number of histograms is kept constant by im-
plementing a binning procedure before each pairwise or
triplet convolution. We employ a new binning procedure,
in which bins are demarked so as to contain equal proba-
bilities, as opposed to equal interaction intervals as done
previously. Starting from the lowest J value and moving to
greater ones, histograms in each consecutive bin are com-
bined, to interaction value J � �piJi=�pi and imposed
equal probability p � �pi � 1=nbin. In this process, histo-
grams at the boundaries of bins are apportioned between
the consecutive bins. Thus, our calculation has 125 000
histograms after each decimation and 40 000 histograms
after each pairwise bond moving. The global flows of the
quenched probability distributions yield the phase dia-
grams. Analysis of the unstable fixed points and unstable
fixed distributions attracting the phase boundaries yields
the order of the phase transitions.

Calculations are done for the quantum Heisenberg spin-
glass systems in integer dimensions. No finite-temperature
phase transition occurs in d � 1, 2. The phase diagrams for
d � 3, 4, 5, 6, 8, 10 are shown in Fig. 1. They are all
strikingly asymmetric, especially in the middle p and low-
temperature (would-be spin-glass phase) region. In d � 3,
our calculated ratio of the critical temperatures of the pure
antiferromagnetic and ferromagnetic systems is TAF

C =TFC �
1:48. This value is to be compared with the values of 1.13

found in the cubic lattice [1,2] and 1.22 found in the b � 2,
d � 3 hierarchical lattice [3,4]. This critical temperature
difference is consistent with the lower ground-state energy
of the antiferromagnetic system, as calculated [27] in d �
3. Our calculated ratios of the antiferromagnetic and fer-
romagnetic critical temperatures, for d � 4, 5, 6, 8, 10
decrease as 1.22, 1.12, 1.07, 1.02, 1.01, respectively. On
the other hand, it is seen that although the phase boundaries
leading to the pure ferromagnetic and antiferromagnetic
critical points regain symmetry as d is increased, the low-
temperature phase diagrams remain asymmetric. The fer-
romagnetic phase penetrates the antiferromagnetic region
at low temperatures. Thus, quantum fluctuations present at
low temperatures favor the ferromagnetic phase over the
antiferromagnetic phase. In d � 6, a second-order phase
boundary occurs directly between the ferromagnetic and
antiferromagnetic phases, as is not seen in isotropic clas-
sical spin-glass systems. A new multicritical point occurs
where all 3 second-order boundaries meet.

The phase transition, between ordered phases, that is
driven by quenched randomness presents a contrast to
phase transitions between ordered phases driven by a sys-
temwise uniform interaction. The latter phase transition is
obtained, at low temperatures, by driving a uniform inter-
action that favors another ordered phase over the existing
one. Under these conditions, essentially the entire system
remains in one ordered phase until the phase transition
point is reached, when essentially the entire system
changes over to the other phase. Throughout this process,
the ordered domains are compact and have fractal dimen-
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FIG. 1. Phase diagrams of the quantum Heisenberg spin-glass systems in temperature 1=J versus antiferromagnetic bond
concentration p for d � 3 to 10. All transitions are second-order, between the ferromagnetic (F), antiferromagnetic (AF), and
paramagnetic (P) phases.
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sionality equal to spatial dimensionality, which translates
to having a renormalization-group eigenvalue exponent of
y � d, the condition for a first-order transition [28]. By
contrast, the phase transition with quenched randomness is
obtained, at low temperatures, by driving quenched local
interactions that favor the other ordered phase over the
existing phase. This means, for example, increasing the
number of random antiferromagnetic bonds when the sys-
tem is in the ferromagnetic phase. Under these conditions,
the ferromagnetic domains avoid the random localities of
antiferromagnetic bonds in the system. The ferromagneti-
cally ordered domains loose weight as the transition is
approached, so that the average magnetization decreases.
At the phase transition, the ordered domains are not com-
pact and have fractal dimensionality less than the spatial
dimensionality, so that the magnetization is zero. This
translates to the renormalization-group eigenvalue expo-
nent y < d, meaning a second-order phase transition. The
converse happens when the phase transition is approached
from the opposite side, with noncompact antiferromagnetic
domains avoiding the random localities of the ferromag-
netic bonds. Similarly, in another recently studied system
with quenched randomness, second-order transitions be-
tween ferromagnetic and layered ordered phases and be-
tween antiferromagnetic and columnar ordered phases, are

obtained in the exact solution of classical anisotropic spin-
glasses on a hierarchical lattice [29]. Thus, we find that
whereas phase transitions between ordered phases are first
order when driven by a uniform interaction, they are sec-
ond order when driven by quenched randomness.

In d � 3, 4, 5, the paramagnetic phase reaching zero
temperature (as an extremely narrow sliver in d � 5) in-
tervenes between the ferromagnetic and antiferromagnetic
phases. In all cases, the ferromagnetic phase penetrates,
reaching the high p values of 0.63 and 0.83, respectively, in
d � 3, where there is a zero-temperature paramagnetic
interval, and d � 4, where there is no zero-temperature
paramagnetic interval. The antiferromagnetic phase re-
cedes at low temperatures, thereby showing a reentrant
phase boundary [26].

There is no spin-glass phase, in the quantum system, in
any dimension. The quantum version of the Sherrington-
Kirkpatrick model [30], namely, the spin-1=2 quantum
Heisenberg model with equivalent-neighbor interactions,
with a symmetric Gaussian distribution, studied from the
high-temperature side, yields a finite-temperature phase
transition, which has been interpreted as a transition to a
low-temperature spin-glass phase [31]. This model should
be similar to our studied models at p � 0:5 in the large d
limit. Thus, we also find a finite-temperature phase tran-
sition (Fig. 1), but the low-temperature phase is explicitly a
ferromagnetic phase with quenched bond randomness. The
latter phase has considerable amount of short-range anti-
ferromagnetic correlations, as seen in Ref. [32].
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useful comments. This research was supported by the
Scientific and Technological Research Council
(TÜBİTAK) and by the Academy of Sciences of Turkey.

Appendix.—The operators ��0H 0�i; l� and
��H �i; j� � �H �j; k� � �H �k; l� of Eq. (1) act on
two-site and four-site states, respectively, where at each
site the spin is in quantum state � �" or # . The trace in
Eq. (1) is, in terms of matrix elements [3],

 huizlje��
0H 0�i;l�j �ui �zli �

X

vj;wk

huivjwkzlje��H �i;j���H �j;k���H �k;l�j �uivjwk �zli; (a1)

TABLE II. The four-site basis states, with the corresponding parity (p), total spin (s), and total spin z component (ms) quantum
numbers. The states j 4;5i, j 8i, j 13;14i are obtained by spin reversal from j 2;1i, j 6i, j 9;10i, respectively.

p s ms Four-Site Eigenstates


 2 2 j 1i � j""""i


 2 1 j 2i �
1
2 fj"""#i 
 j""#"i 
 j"#""i 
 j#"""ig


 2 0 j 3i �
1��
6
p fj""##i 
 j"#"#i 
 j"##"i 
 j#""#i 
 j#"#"i 
 j##""ig


 1 1 j 6i �
1
2 fj"""#i � j""#"i � j"#""i 
 j#"""ig


 1 0 j 7i �
1��
2
p fj#""#i � j"##"ig

� 1 1 j 9i �
1
2 fj"""#i � j""#"i 
 j"#""i � j#"""ig; j 10i �

1
2 fj"""#i 
 j""#"i � j"#""i � j#"""ig

� 1 0 j 11i �
1��
2
p fj"#"#i � j#"#"ig; j 12i �

1��
2
p fj""##i � j##""ig


 0 0 j 15i �
1
2 fj""##i � j"#"#i � j#"#"i 
 j##""ig; j 16i �

1����
12
p fj""##i 
 j"#"#i � 2j"##"i � 2j#""#i 
 j#"#"i 
 j##""ig

TABLE I. The two-site basis states, with the corresponding
parity (p), total spin (s), and total spin z component (ms)
quantum numbers. The state j�3i is obtained by spin reversal
from j�1i. The renormalized two-site Hamiltonian��0H0�i; l� is
diagonal in this set, with the diagonal elements of j�1–3i and
j�4i being 1

4 J
0 
G0 and � 3

4 J
0 
G0, respectively.

p s ms Two-Site Eigenstates


 1 1 j�1i � j""i


 1 0 j�2i �
1��
2
p fj"#i 
 j#"ig

� 0 0 j�4i �
1��
2
p fj"#i � j#"ig
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where ui, vj, wk, zl, �ui, �zl are single-site state variables.
Thus, Eq. (a1) is the contraction of a 16� 16 matrix into a
4� 4 matrix. Basis states that are simultaneous eigenstates
of parity (p), total spin magnitude (s), and total spin z
component (ms) block-diagonalize these matrices and
thereby make Eq. (a1) manageable. These sets of 4 two-
site and 16 four-site eigenstates, denoted by fj�pig and
fj qig respectively, are given in Tables I and II. The diago-
nal blocks are given in Tables I and III. Because of the
microscopic randomness of the spin-glass problem, the
four-site Hamiltonian mixes states of different parity, as
seen in Table III. Equation (a1) is thus rewritten as

 h�pje
��0H 0�i;l�j� �pi �

X
u;z; �u;
�z;v;w

X

q; �q

h�pjuizlihuivjwkzlj qi

� h qje
��H �ij���H �j;k���H �k;l�j �qi

� h �qj �uivjwk �zlih �ui �zlj� �pi:

(a2)

There are only two rotation-symmetry independent ele-
ments of h�pje

��0H 0�i;l�j� �pi � h�pjj� �pi in Eq. (a2),
which have p � �p � 1, 4 (thereby leading to one renor-
malized interaction constant J0 and the additive con-
stant G0). From Eq. (a2), h�1jj�1i � h 1jj 1i

1
2 h 2jj 2i 


1
6 h 3jj 3i 


1
2 h 6jj 6i 


1
2 h 7jj 7i 


1
2 �

h 9jj 9i � h 9jj 10i 

1
2 h 10jj 10i 


1
3 h 16jj 16i and

h�4jj�4i � h 9jj 9i 
 2h 9jj 10i 
 h 10jj 10i 

1
2 �

h 11jj 11i 
 h 11jj 12i

1
2 h 12jj 12i 
 h 15jj 15i, with

h qjj �qi � h qje
��H �i;j���H �j;k���H �k;l�j �qi. From

Table I, the renormalized interaction constant is given by
J0 � ln�h�1jj�1i=h�4jj�4i�.
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[8] A. Erbaş, A. Tuncer, B. Yücesoy, and A. N. Berker, Phys.
Rev. E 72, 026129 (2005).

[9] M. Hinczewski and A. N. Berker, Phys. Rev. E 73, 066126
(2006).

[10] M. Hinczewski, Phys. Rev. E 75, 061104 (2007).
[11] Z. Zhang, L. Rong, and S. Zhou, Physica (Amsterdam)

377A, 329 (2007).
[12] Z. Zhang, S. Zhou, and T. Zou, Eur. Phys. J. B 56, 259

(2007).
[13] H. D. Rozenfeld and D. ben-Avraham, Phys. Rev. E 75,

061102 (2007).
[14] H. D. Rozenfeld, S. Havlin, and D. ben-Avraham, New J.

Phys. 9, 175 (2007).
[15] E. Khajeh, S. N. Dorogovtsev, and J. F. F. Mendes, Phys.

Rev. E 75, 041112 (2007).
[16] M. Suzuki and H. Takano, Phys. Lett. A 69, 426

(1979).
[17] H. Takano and M. Suzuki, J. Stat. Phys. 26, 635 (1981).
[18] P. Tomczak, Phys. Rev. B 53, R500 (1996).
[19] P. Tomczak and J. Richter, Phys. Rev. B 54, 9004

(1996).
[20] P. Tomczak and J. Richter, J. Phys. A 36, 5399 (2003).
[21] M. Hinczewski and A. N. Berker, Eur. Phys. J. B 51, 461

(2006).
[22] M. Hinczewski and A. N. Berker, arXiv:cond-mat/

0607171.
[23] C. N. Kaplan, A. N. Berker, and M. Hinczewski (to be

published).
[24] O. S. Sar�yer, A. N. Berker, and M. Hinczewski,

arXiv:0704.1064.
[25] A. Falicov, A. N. Berker, and S. R. McKay, Phys. Rev. B

51, 8266 (1995).
[26] G. Migliorini and A. N. Berker, Phys. Rev. B 57, 426

(1998).
[27] H. Nishimori and S. J. Miyake, Prog. Theor. Phys. 73, 18

(1985).
[28] S. Ostlund and A. N. Berker, Phys. Rev. B 21, 5410

(1980).
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 1  2  3

 1
1
4 �J1 
 J2 
 J3� 0 0

 2 0 1
4 �J1 
 J2 
 J3� 0

 3 0 0 1
4 �J1 
 J2 
 J3�

 6  9  10

 6
1
4 ��J1 
 J2 � J3�

1
2 �J1 � J3� 0

 9
1
2 �J1 � J3� � 1

4 �J1 
 J2 
 J3�
1
2 J2

 10 0 1
2 J2

1
4 �J1 � J2 
 J3�

 15  16

 15 � 3
4 J2

��
3
p

4 �J1 
 J3�

 16

��
3
p

4 �J1 
 J3�
1
4 ��2J1 
 J2 � 2J3�
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