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We propose a way to measure the momentum p of a nanomechanical oscillator. The p detector is based
on two tunnel junctions in an Aharonov-Bohm-type setup. One of the tunneling amplitudes depends on the
motion of the oscillator, the other one not. Although the coupling between the detector and the oscillator is
assumed to be linear in the position x of the oscillator, it turns out that the finite-frequency noise output of
the detector will in general contain a term proportional to the momentum spectrum of the oscillator. This
is a true quantum phenomenon, which can be realized in practice if the phase of the tunneling amplitude of
the detector is tuned by the Aharonov-Bohm flux � to a p-sensitive value.
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In nanoelectromechanical (NEM) systems, it is the po-
sition of the oscillator that typical measurement de-
vices (like tunnel junctions or single electron transis-
tors) are coupled to. Using these detectors, position
measurements with sensitivities close to the standard
quantum limit have already been observed [1–3]. From
a fundamental point of view, it is desirable to go fur-
ther, i.e., to prepare and manipulate NEM oscillators
in the quantum regime. A quantum NEM system would
allow us to study an ideal realization of a continuous
variable quantum system [4]. The exploration of such
systems has to be seen as complementary to the wide study
of two-level systems done in the context of quantum
computing.

In order to be able to fully characterize a continuous
variable quantum system that is described by two non-
commuting operators x̂ and p̂, we need to be able to
measure expectation values of moments of both of them
[5]. Only this allows us, for instance, to detect the en-
tanglement between two (or more) NEM devices [6]. The
literature already contains proposals regarding quantum
measurements of the momentum of macroscopic ob-
jects like those used for gravity-wave detection [7].
However, none of these proposals have been realized
in practice. In this Letter, we propose a realistic and
feasible way to measure the momentum of a nanometer-
sized resonator. This is a nontrivial task since the coupling
between the detector and the oscillator is naturally de-
scribed by an x dependence but not a p dependence.
Nevertheless, the proposed setup [shown in Fig. 1(b)] al-
lows for a measurement of the momentum spectrum
Sp�!� �

R
dtei!thfp̂�t�; p̂�0�gi of the oscillator. This can

be done because we have found a way to tune the phase of
the tunnel coupling term that is sensitive to the position of
the oscillator by an Aharonov-Bohm (AB) flux �; see
Fig. 1(b). Related setups have been investigated recently
in the context of dephasing due to the coupling of an AB
ring structure to a NEM device [8].

A typical position detector that has been analyzed theo-
retically in great detail [9–15] and experimentally realized
[16,17] is depicted in Fig. 1(a). It shows a single tunnel
junction coupled to a NEM oscillator. A thorough analysis
of the coupled quantum system leads to the result that the
output signal of the detector is sensitive to the position
spectrum Sx�!� �

R
dtei!thfx̂�t�; x̂�0�gi of the oscillator.

The modification of the detector shown in Fig. 1(b) instead
allows for a measurement of Sp�!�.

The Hamiltonian of the coupled system H �
Hosc �HB �Htun is the sum of the Hamiltonian of the
(quantum) harmonic oscillator Hosc (with mass M and
frequency �), the bath Hamiltonian HB (describing the
leads of the detector), and the tunneling Hamiltonian Htun

(which couples the dynamics of the electrons that tunnel
across the junction to the motion of the oscillator):

 Hosc � @�
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aya�
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X
k;q
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Here, k �q� is a wave vector in the right (left) lead, c�y� is
the electron annihilation (creation) operator, and Y�y� is an
operator that decreases (increases) m, the number of elec-
trons that have tunneled through the system, by one. It
allows one to keep track of the transport processes during
the evolution of the system. For typical nanoresonators,
the mass M varies between 10�18 and 10�15 kg, and the
resonance frequency is usually 1 MHz<�=2�< 1 GHz
[18].

We first discuss the model in the standard configuration
shown in Fig. 1(a) and later on describe the new setup in
Fig. 1(b). For small displacements with respect to the
tunneling length (which is the relevant regime in typical
experiments on NEM devices), the tunneling amplitude
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T�x̂� can be taken as a linear function of x̂, namely T�x̂� �
�ei’0=2�����0 � e

i��1x̂�, where �0 and �1 are real, and �
is the density of states. The phases ’0 and � describe
details of the detector-oscillator coupling [19]. It can be
shown that our detector is quantum limited for any �,
according to the definition of a quantum-limited detector
in Ref. [14]. Within the single-junction setup [Fig. 1(a)],
the relative phase � is sample dependent and cannot be
tuned experimentally. In a typical device, the x dependence
of the phase of T�x̂� is much weaker than the x dependence
of the amplitude. Then, we can set � ’ 0, and the tunnel
junction acts as a position-to-current amplifier where the
frequency-dependent current noise SI�!� of the detector
contains a term proportional to the position spectrum
Sx�!� of the oscillator, i.e., �SI�!� � SI�!� � 2ehIi �
�2
xSx�!� with �x the gain of the amplifier [13,20].
We now demonstrate that a tunnel junction with a phase

� � �=2 mod� acts as a momentum detector and
�SI�!� � �2

pSp�!�, where �p is the gain of the
momentum-to-current linear amplifier. The critical re-
quirement to build a momentum detector is to be able to
vary � experimentally. This can be done using the AB-type
setup shown in Fig. 1(b): a metallic ring where one arm is a
standard tunnel junction position detector with tunneling
amplitude Td�x̂�, and the other arm is a position-
independent tunnel junction with tunneling amplitude Tu

[21]. The total transmission amplitude T�x̂;�� of the de-
vice is the sum of both tunneling amplitudes [23]. Since
only one arm shows a position dependence, the induced
phase difference between the two arms affects the position-
independent and the position-dependent parts of the tun-
neling amplitudes �0 and �1 in a different way. Explicit
calculation shows that the tunneling amplitude is given (up
to a global gauge-dependent phase factor) by T�x̂;�� �
�0��� � e

i�����1x̂=�2��� with
 

�2
0��� � �

2
0;d� �

2
0;u� 2�0;d�0;u cos

�
2�

�

�0
�’0;d�’0;u

�
;

���� � 2�
�

�0
�’1;d�’0;u

�Arg��0;u� ei�2���=�0��’0;d�’0;u��0;d�; (4)

where we have defined Tu � ei’0;u�0;u, Td � ei’0;d�0;d �
ei’1;d�1;dx̂, �1 � �1;d, and �0 � h=e [24]. The position-
independent part of the tunneling amplitude �0��� displays
the standard AB oscillations as a function of flux.
Likewise, the relative phase ���� shows a distinct depen-
dence on the flux. Importantly, for �0;u > �0;d, the phase
���� can be tuned continuously in the whole range
���;�	. In the limit, where �0;u 
 �0;d, ���� � 2� �

�0
�

��� � 0� varies linearly with the applied flux. In the
opposite regime �0;u � �0;d, � no longer depends on �.
Therefore, it is crucial to put the tunneling amplitudes in
the regime where ���� can be tuned to �=2. We will show
below that a feasible way to calibrate ���� to the
p-sensitive point �=2 is a measurement of the flux depen-
dence of the current through the AB detector.

Similarly to Refs. [13,20], we study the coupled system
using the quantum equation of motion for the charge-
resolved density matrix within the Born-Markov approxi-
mation, assuming that eV
 @�.

It has been derived previously that, under the assumption
that the tunneling amplitude depends linearly on x̂, the
equation of motion for the reduced density matrix of the
oscillator is of Caldeira-Leggett form [12,13,15]. Thus, it
contains both a damping and a diffusion term. When the
electron temperature is much smaller than the applied bias
(and taking V > 0), the detector-induced damping coeffi-
cient is �� � @�2

1=�4�M� and the diffusion coefficient is
D� � 2M��kBTeff with Teff � eV=2kB.

In general, the oscillator is not only coupled to the de-
tector but also to the environment. The coupling to this
additional bath is controlled via �0 � �=Q0 (related to the
finite quality factor Q0 of the mode, which in current
experiments varies from 103 to 106 [18]) and the associated
diffusion constant D0 � 2M�0kBTenv that must be added
to the detector-induced damping and diffusion constants to
find the total damping coefficient �tot � �� � �0 and the
total diffusion coefficient Dtot�D0�D�. Tenv denotes the
temperature of the environment. In typical experiments, it
varies from 30 mK to 10 K. Within our model, all these
system parameters are independent of the applied flux.

FIG. 1 (color online). (a) Position detector. The figure shows
schematically a position detector of the motion of a NEM
oscillator (red lines). The detector is based on a tunnel junction
with a tunnel matrix element T�x̂�, which depends on the
position of the oscillator. The shaded (yellow) regions are
assumed to be conducting. (b) Position and/or momentum de-
tector. The figure illustrates a detector that contains two tunnel
junctions that form a loop threaded by a magnetic flux �. Tuning
the flux will change the performance of the detector from being
able to detect the power spectrum of the position operator of the
oscillator to being able to detect the power spectrum of the
momentum operator of the oscillator. For clarity, the two insets
show a simplified illustration of the detectors in (a) and (b).
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It is now straightforward to calculate the current and the current noise of the detector. We skip the details here (see
Ref. [20] for � � 0) and directly turn to the results. The average current of the detector is given by

 I �
e2V
h
��2

0 � 2 cos��0�1hxi � �2
1hx

2i� �
2e���0

@�1
sin�hpi � e��: (5)

For � � 0 mod�, the average current contains a term
proportional to the average momentum of the oscillator
that does not vary with the applied bias [15]. However,
since hpi � 0 in the steady state, the average current con-
tains no information about the momentum of the oscillator.
Therefore, the current of the detector cannot be used as a p
detector in the steady state. Nevertheless, the current is

important to calibrate � to the p-sensitive value �=2. A
careful analysis of the current I as a function of � shows
that the inflection points of I��� correspond precisely to
values of � � �=2 mod�. Therefore, we can use a current
measurement to tune � to a p-sensitive value.

In the experimentally relevant regime, where �2
1hx

2i �
�2

0, and for !��, the dominant contributions to the
current power spectrum of the detector are

 SI�!� � 2ehIi � 8e2!
Z 1

0
dt sin�!t� 

�
eV

h
cos��0�1hhxmii �

���0

@�1
sin�hhpmii

�
; (6)

where hhabii � habi � haihbi. We now further analyze the added noise due to the presence of the oscillator, �S �
SI�!� � 2ehIi. This noise spectrum is the sum of a contribution arising due to correlations between the transferred charge
m and position [term�hhxmii in Eq. (6)], which we call �S1, and one due to correlations betweenm and the momentum of
the oscillator [term �hhpmii in Eq. (6)], which we call �S2. The full spectrum is therefore �S � �S1 � �S2 with

 �S1�!��
�
�2
x

�
1�

@�

2 eV

�x2
0

hhx2ii

�
��x�p

�
M�

2�
�2

1�x2
0
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M�2hhx2ii

��
Sx�!���x�p

�
1�

MeV

hhp2ii

�
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M
4��2�!2�

4�2
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2��!2��2�2
;

(7)
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�
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@�
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0
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�
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1�x2
0
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M�2hhx2ii

��
4M�2hhx2ii��2�!2�

4�2
tot!

2��!2��2�2
; (8)

where the position and the momentum gain are given by
�x � 2e�0�1�eV=h� cos� and �p � �e=2�M��0�1 sin�,
respectively. We now discuss several limits of the current
noise SI�!� of the detector in the case of a general phase �.
For � � 0 mod�, we recover Eq. (30) of Ref. [20]—the
position detector result. More interestingly, for � �
�=2 mod�, �x � 0, and the detector output contains
only two terms: The first one is proportional to Sp�!�
and therefore peaked around �. The second one is propor-
tional to (�2 �!2) and contributes negligibly near reso-
nance ! � �. Hence, for � � �=2, we obtain

 �S�! � �� � �2
p

�
1�

MeV

hhp2ii

�
Sp�!�: (9)

Thus, the added noise is directly proportional to the mo-
mentum spectrum of the oscillator. This is the key result of
our Letter.

From the parameter dependence of each gain, we can
estimate that the momentum signal at � � �=2 should be
typically smaller than the position signal at � � 0 by a
factor �eV=@��2. Nevertheless, it is unambiguously pos-
sible to identify a p signal in the current noise. We now
describe three different ways to do this. First, since �x / V
while �p is independent of V, the bias voltage dependence
of the noise spectrum can also be used to confirm that
momentum fluctuations are measured. Second, for an os-

cillator undergoing Brownian motion, the temperature de-
pendence of both signals differs qualitatively. As in the
position detector case, the momentum signal is reduced by
a quantum correction [the term proportional to
�MeV=hhp2ii in Eq. (9)] that arises from the finite com-
mutator of x̂ and p̂. However, there is a fundamental
difference between the x detector result (Eq. 7 of
Ref. [13]) and the p detector result [Eq. (9)]. In the former
case, the quantum corrections are always small compared
to the leading terms, and therefore the peak at resonance is
always positive. In contrast, the two terms in Eq. (9) can be
of equal magnitude and compete about the sign of �S�! �
��. The p-sensitive current noise in Eq. (9) changes sign
when the effective temperature of the oscillator is equal to
�eV=kB��1� ��=2�tot�=�1� ��=�tot�. For a cold envi-
ronment Tenv � eV, �S�!� is negative at the resonance,
whereas, for a hot environment Tenv > eV, �S�!� is posi-
tive. This change of sign never appears during a position
measurement, so this pronounced difference between an
x-dependent and a p-dependent signal can be used to
distinguish the two. We illustrate the change of sign in
the inset of Fig. 2, where the added current noise for � �
�=2 is plotted for different Tenv [25].

In the main panel of Fig. 2, we plot the full detector
output for different values of � near the optimal operation
point for momentum detection. Away from � � �=2, con-
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tributions to the current noise ��2
x become important and

wash out the momentum signal ��2
p. Indeed, for small

�� � �� �=2, the ratio �x=�p � ������eV=@�� of the
two amplification factors becomes large as soon as j��j>
@�=eV. In the high-bias regime (eV
 @�), momentum
detection therefore requires good experimental control
over the applied flux. At moderate bias eV � @�, the
requirement on �� becomes less restrictive. Finally, the
current noise spectrum at � � �=2 shows a strong sym-
metry around � that makes the optimal operation point
easily identifiable.

In conclusion, we have shown how a modified tunnel
junction position detector can be designed to detect the
momentum fluctuations of a NEM oscillator. By using two
tunnel junctions in an AB-type setup, it is possible to
precisely tailor the interaction Hamiltonian between the
detector and the oscillator via an external magnetic field.
We have demonstrated how the proposed detector can be
made sensitive to either displacement or momentum fluc-
tuations of the oscillator.
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