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We show that the Coulomb drag effect exhibits saturation at small temperatures, when calculated to the
third order in the interlayer interactions. The zero-temperature transresistance is of the order h=�e2g3�,
where g is the dimensionless sheet conductance. The effect is therefore the strongest in low mobility
samples. This behavior should be contrasted with the conventional (second order) prediction that the
transresistance scales as a certain power of temperature and is (almost) mobility independent. The result
demonstrates that the zero-temperature drag is not an unambiguous signature of a strongly coupled state in
double-layer systems.

DOI: 10.1103/PhysRevLett.100.026805 PACS numbers: 73.23.�b, 73.50.�h, 73.61.�r

The Coulomb drag effect has proven to be a sensitive
probe of electron-electron (e-e) interactions. The phe-
nomenon is usually observed [1–6] in double-layer sys-
tems, where electrons interact through the long-ranged
Coulomb forces. A current, passing through one of the
layers (the active layer), induces a voltage across the
second (passive) layer. The ratio between the two, the so-
called drag transresistance �D, carries valuable informa-
tion about the state of electrons in each of the layers, as
well as the nature of their mutual interactions.

The transresistance for weakly interacting electrons was
calculated [7–11] in the second order in the screened
interlayer interaction and found to be given by

 �D�T� � 0:12
h

e2

�
T
EF

�
2 1

��d�2�kFd�2
; (1)

where d is the separation between the layers, EF and kF are
the Fermi energy and momentum correspondingly, and � is
the inverse Thomas-Fermi screening radius. This result is
in reasonable agreement with a number of experiments [1–
4]. Its main feature is the quadratic temperature depen-
dence, which may be traced back to the phase volume
accessible for the interlayer e-e scattering. The second
order effect requires electron-hole asymmetry, i.e., the
difference in velocity between electrons and holes on the
opposite sides of the Fermi surface. Such an asymmetry
scales as E�1

F for each of the two layers, giving rise to the
factor E�2

F in Eq. (1). The latter serves as the dimensional
scale, which normalizes the T2 dependence.

On the other hand, the systems with strong interlayer
correlations are predicted to exhibit a nonzero drag trans-
resistance (/h=e2) even at zero temperature. The examples
include 1D charge density waves at exact commensurabil-
ity [12], as well as Quantum Hall bilayer structures at the
total filling factor � � 1 [13]. In the latter system the effect
was likely observed experimentally in Ref. [14]. This
raises a question if �D�0� may serve as an unambiguous
indicator of a strongly correlated state in a system at hand,
i.e., whether the drag transresistance undergoes a quantum

phase transition between the weakly-coupled state, where
it is strictly zero, and a strongly-coupled phase, where it is
finite.

In this Letter we give a strong argument against such a
scenario. We show that �D�0� � 0 already in weakly in-
teracting bilayer systems. To this end we evaluate the
transresistance in the third order in the (screened) inter-
layer interactions and find a constant temperature-
independent contribution

 �D�T� � 0:27
h

e2

1

g3

1

��d�2
; T < h=�; (2)

where g � 25:8k�=�� is the dimensionless conductance
(here �� is the resistance of the single layer) and � is the
elastic scattering time. Drag effect, saturating at small
temperatures, is therefore not an automatic indicator of a
strongly correlated state.

There are general reasons to expect that the third-order
effect may be qualitatively different from the second order
one, Eq. (1). Indeed, the third-order transresistance does
not rely on the electron-hole asymmetry. This is because
the corresponding linear-response diagrams involve four-
leg vertices (see below) which do not vanish within line-
arized dispersion relation approximation (i.e., in the
electron-hole symmetric case). Therefore, the result is
expected to be independent of the Fermi energy, EF.
Since we are interested in the lowest temperatures, it is
natural to focus on the diffusive regime, where T � h=�.
In this regime there is no other relevant energy, which may
provide a scale for a temperature dependence. Hence, the
temperature-independent result, Eq. (2), is not entirely
unexpected. Moreover, the four-leg vertex, mentioned
above, is known to play a central role in the low-
temperature transport of diffusive metals. It is exactly
this object that gives rise to singular Altshuler-Aronov
(AA) corrections to the intralayer conductance [15].

Coming from another perspective, it is certainly unusual
to find a temperature-independent result for the quantity
which relies on the e-e scattering rate. Indeed, the latter is
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proportional to the available phase volume around the
Fermi surface, which scales as T2. However, in addi-
tion to the occupation numbers the scattering rate is pro-
portional to a certain matrix element (the overlap inte-
gral of six wave functions for the third-order process,
considered here). In diffusive systems such matrix ele-
ments are known to be singularly enhanced in the limit
where all involved states are close in energy [16]. It is
exactly this enhancement that leads to singular e-e inter-
action effects in the low-temperature diffusive limit [17].
In the case of the third-order transconductance in 2D
the smallness of the phase volume is exactly compensated
by the divergence of the corresponding matrix elements.
This yields the temperature-independent transresistance,
Eq. (2). The diffusive enhancement of the matrix elements
is less pronounced in cleaner systems. Hence, in the clean
limit, g! 1, the zero-temperature drag, Eq. (2),
disappears.

There are two limitations on the applicability of Eq. (2)
at very low temperatures. (i) Once the temperature length
LT �

�������������
hD=T

p
, where D is the diffusion constant, reaches

the sample size L, the growth of the matrix elements is
saturated. As a result, �D / T2 at T < ETh, where ETh �
hD=L2 is the Thouless energy. (ii) If the sample size is very
big, one may enter the regime of disorder and/or inter-
action induced localization. The relevant temperature scale
is that where the AA correction �� � e2=h�g�
��1 ln�h=T��� [15] is significant, i.e., T � �h=��e��g. At
smaller temperatures the diffusive approximation breaks
down and our result, Eq. (2), is not applicable.

A natural question is why in the experiments of, e.g.,
Refs. [1–3] the low-temperature saturation of �D�T� was
not observed. In order to answer, one may estimate the
saturation temperature T	 by equating Eqs. (1) and (2).
This way, one finds T	 
 EF�kFd�g

�3=2. Employing the
parameters of, e.g., Ref. [2]: EF 
 60 K, g 
 100, and
kFd 
 4, one finds T	 
 0:25 K and the residual resist-
ance �D 
 0:4 m� as it follows from the Eq. (2). At the
same time the lowest temperature reported in Ref. [2] T 

0:5 K and the corresponding drag �D 
 0:65 m� are just
above the expected saturation. The similar situation is true
regarding most of the other reports of the Coulomb drag
[1,3–5].

It is rather likely, though, that the saturation observed by
Lilly et al. [18] in � � 1 Quantum Hall bilayer system in
the composite fermion regime is a manifestation of Eq. (2).
Indeed, it was shown [19] that the diffusive corrections in
the composite fermion regime are rather similar to those in
zero magnetic field. Virtually the only difference is a
substantial downward renormalization of the composite
fermion conductance gcf , as compared to that in the zero
field, g. Estimating gcf 
 10 and Ecf

F 
 5 K for the
samples of Ref. [18], one finds T	 
 0:15 K and �D�0� 

2 � in good agreement with Ref. [18]. To verify Eq. (2),
more experiments in zero magnetic field with smaller g or/
and smaller temperatures are needed.

The four-leg vertex, which is a building block for dia-
grams of the third-order drag transconductance is depicted
in Fig. 1. It describes an induced nonlinear interaction of
electromagnetic fields through excitation of electron-hole
pairs in a given layer. The vertex is nonlocal because of the
diffusive propagation of the electron-hole excitations
within the layer. The latter is encoded in the propagator

 D ��q;!� �
1

��

1

D�q
2 � i!

; (3)

where �� is the density of states of the layer � � 1, 2 and
D� is its diffusion coefficient. Notice that the dimension-
less conductance is expressed as g� � ��D�.

We work with the Keldysh technique [20–22]. In its
framework the fluctuating electromagnetic potentials ac-
quire an additional index: classical (cl) or quantum (q),
which stay for symmetric and antisymmetric combinations
of the fields propagating forward and backward in time,
correspondingly. The proper indices are indicated in Fig. 1.
The fact that the four-leg vertex of this very structure is
unique in the leading order in 1=g� may be rigorously
proven within Keldysh nonlinear sigma-model [21]. In
fact, it is exactly this vertex which gives rise to the singular
AA correction [15]. The latter is obtained by pairing one
classical and one quantum electromagnetic potentials,
while the two remaining ones represent an external (clas-
sical) electric field along with induced current [21].

It is convenient to work in a gauge, where the Coulomb
interactions are mediated by the longitudinal vector poten-
tials, rather than the scalar potentials. An advantage of
using such a gauge is that both internal and external
potentials, as well as the current sources, are all expressed
through the same type of field. This makes the structure of
the vertex, Fig. 1, particularly symmetric. Moreover, the
gauge may be chosen in a way that the propagator of the
longitudinal vector potentials V �� � 2ihAcl�A

q
�i automati-

cally includes the vertex renormalization by the disorder
[21]

 V ���q;!� �
q2VR���q;!�

�D�q
2 � i!��D�q

2 � i!�
; (4)

FIG. 1. The four-leg vertex, central to the third-order drag
effect, as well as to the intralayer AA correction. External
wavy lines represent fluctuating vector potentials; the ladder is
the diffusion propagator D�r� r0; !�.

PRL 100, 026805 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
18 JANUARY 2008

026805-2



where VR���q;!� is the 2� 2 matrix of retarded intralayer
and interlayer interactions calculated within random phase
approximation (RPA). The latter is the solution of the stan-
dard Dyson equation [10,11] V̂R � V̂0 � V̂0�̂V̂R, where

 V̂ 0�
2�e2

q
1 e�qd

e�qd 1

� �
; �̂�

�1D1q2

D1q2�i! 0

0 �2D2q2

D2q2�i!

0
@

1
A:
(5)

Note that the polarization operator �̂�q;!� has no off-
diagonal elements, reflecting the absence of tunneling
between the layers.

We are now in a position to evaluate the third-order drag
transconductance. The corresponding diagrams are con-
structed from the two vertices of Fig. 1; one for each of
the layers is shown in Fig. 2. Remarkably, there are only
two ways to connect them, using the propagators (4) (recall
that hAq�A

q
�i � 0 [22]). The analytic expression for the sum

of the two diagrams of Fig. 2 is given by

 �D � 32e2Tg2
1g

2
2

Z 1
0

d!d�

4�2 F 1F 2

X
q;Q

Im
�
D1�q;!�D2�q;!�V 12�q;!�V 12

�
q
2
�Q;

!
2
��

�
V 12

�
q
2
�Q;

!
2
��

��
:

(6)

The two functions F 1�!;�� and F 2�!;�� originate from
the integration over the fast electronic energy " (see
Fig. 1), in the active and passive layers correspondingly.
In the dc limit they are given by
 

F 1�!;�� � T
@
@�
�B���!=2� �B���!=2��; (7a)

F 2�!;�� � 2�B���!=2� �B���!=2� �B�!�;

(7b)

B�!� �
!
T

coth
�
!
2T

�
: (7c)

To make the further calculations more compact, we
restrict ourselves to the identical layers. We first consider
the experimentally most relevant case of the long-ranged
coupling, where �d
 1. Here � � 2�e2� is the Thomas-
Fermi inverse screening radius. In this limit the effective
interlayer interaction potential, Eqs. (4) and (5), acquires a
simple form

 V 12�q;!� �
1

g
1

�dDq2 � 2i!
: (8)

Next, we substitute Eqs. (3), (7), and (8) into Eq. (6) and
perform the energy and momentum integrations. The in-
spection of the integrals shows that both energies ! and �
are of the order of the temperature !��� T (in com-
pliance with the phase volume considerations) [23]. On the
other hand, the characteristic value of the transferred mo-
menta is q�Q�

�������������������
T=�D�d�

p
�

����������
T=D

p
[cf. Equation (8)].

Therefore one may disregardDq2 as compared to i! in the
expressions for D��q;!�, Eq. (3), approximating the prod-
uct D1D2 in Eq. (6) by �!�2. This factor represents the
diffusive enhancement of the matrix elements, mentioned
in the introduction. Such spatial scales separation implies
that the four-leg vertices, Fig. 1, are effectively spatially
local, while the three interlayer interaction lines are long-
ranged.

Rescaling energies by T and momenta by
�������������������
T=�D�d�

p
,

one may reduce the expression (6) for the transconductance
to �D � �e

2=h�g�1��d��2 � �dimensionless integral�.
The latter integral does not contain any parameters and is
free from divergences in all directions. It is thus simply a
number that may be evaluated numerically [24]. In the
limit �D � �e2=h�g� the transresistance is related to �D
by �D � �Dh

2=�e4g1g2�, resulting finally in Eq. (2).
To emphasize the fact that the scale separation, dis-

cussed above, is not crucial for having the low-temperature
saturation, we briefly consider the case of the short-ranged
interlayer interactions, VR12�q;!� � V0. The latter may be
relevant, if interactions are screened by, e.g., metallic back
gate. One employs then Eqs. (3) and (4) and rescales the

FIG. 2. Two diagrams for the drag transconductance �D in the
third order in the interlayer interactions, V 12�q;!�, denoted by
wavy lines. The intralayer diffusion propagators D��q;!�,
Eq. (3), are denoted by ladders.
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energies by the temperature and the momenta by
����������
T=D

p
.

This way the transconductance, Eq. (6), once again reduces
to the dimensionless and parameter free integral. The latter
is convergent in all directions and may be readily evalu-
ated, resulting in

 �D � 0:01
h

e2

1

g3 ��V0�
3: (9)

Notice that the effect is expected to have the negative sign
for the short-ranged attractive interactions. This observa-
tion may have relevance for oppositely doped double-layer
structures.

The low-temperature saturation of the Coulomb drag
was discussed previously in Refs. [25,26]. Both of them
considered essentially different and somewhat more exotic
mechanisms. The zero-temperature saturation suggested in
Ref. [25] relies on the assumption that the electrons in both
layers are scattered by exactly the same disorder potential.
Ref. [26] focuses on the strongly coupled regime, where
the pairing order parameter is suppressed by disorder.

To conclude, we have studied the Coulomb drag phe-
nomenon in weakly interacting bilayer systems and have
found that the effect saturates at small temperatures, when
calculated to the third order in the interlayer interactions.
The saturation of drag relies on the presence of disorder
and scales inversely with mobility. It does not require,
though, any correlations of the disorder potential in the
two layers. The effect was possibly observed in Ref. [18],
although more experiments in lower mobility samples and
zero magnetic field are highly desirable.

We are grateful to D. Bagrets, L. Glazman, I. Gornyi,
F. von Oppen, A. Savchenko, B. Shklovskii, and A. Stern
for stimulating discussions. This work was supported by
NSF Grant No. DMR 0405212. A. K. is also supported by
the A. P. Sloan foundation.

[1] P. M. Solomon, P. J. Price, D. J. Frank, and D. C. La Tulipe,
Phys. Rev. Lett. 63, 2508 (1989).

[2] T. J. Gramila, J. P. Eisenstein, A. H. MacDonald, L. N.
Pfeiffer, and K. W. West, Phys. Rev. Lett. 66, 1216 (1991).

[3] U. Sivan, P. M. Solomon, and H. Shtrikman, Phys. Rev.
Lett. 68, 1196 (1992).

[4] M. Kellogg, J. P. Eisenstein, L. N. Pfeiffer, and K. W.
West, Solid State Commun. 123, 515 (2002).

[5] A. S. Price, A. K. Savchenko, B. N. Narozhny, G. Allison,
and D. A. Ritchie, Science 316, 99 (2007).

[6] R. Pillarisetty, H. Noh, D. C. Tsui, E. P. De Poortere,
E. Tutuc, and M. Shayegan, Phys. Rev. Lett. 89, 016805
(2002).

[7] B. Laikhtman and P. M. Solomon, Phys. Rev. B 41, 9921
(1990).

[8] A.-P. Jauho and H. Smith, Phys. Rev. B 47, 4420 (1993).
[9] L. Zheng and A. H. MacDonald, Phys. Rev. B 48, 8203

(1993).
[10] A. Kamenev and Y. Oreg, Phys. Rev. B 52, 7516 (1995).
[11] K. Flensberg, B. Y.-K. Hu, A.-P. Jauho, and J. M. Kinaret,

Phys. Rev. B 52, 14761 (1995).
[12] Y. V. Nazarov and D. V. Averin, Phys. Rev. Lett. 81, 653

(1998).
[13] A. Stern and B. I. Halperin, Phys. Rev. Lett. 88, 106801

(2002).
[14] M. Kellogg, J. P. Eisenstein, L. N. Pfeiffer, and K. W.

West, Phys. Rev. Lett. 90, 246801 (2003).
[15] B. L. Altshuler and A. G. Aronov, Zh. Eksp. Teor. Fiz. 77,

2028 (1979) [Sov. Phys. JETP 50, 968 (1979)].
[16] Ya. M. Blanter and A. D. Mirlin, Phys. Rev. E 55, 6514

(1997); B. L. Altshuler, Y. Gefen, A. Kamenev, and L. S.
Levitov, Phys. Rev. Lett. 78, 2803 (1997).

[17] B. L. Altshuler and A. G. Aronov, in Electron-Electron
Interactions in Disordered Systems, edited by A. J. Efros
and M. Pollak (Elsevier, Amsterdam, 1985).

[18] M. P. Lilly, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West,
Phys. Rev. Lett. 80, 1714 (1998).

[19] D. V. Khveshchenko, Phys. Rev. Lett. 77, 362 (1996);
A. D. Mirlin and P. Wolfle, Phys. Rev. Lett. 78, 3717
(1997).

[20] L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov.
Phys. JETP 20, 1018 (1965)].

[21] A. Kamenev and A. Andreev, Phys. Rev. B 60, 2218
(1999).

[22] A. Kamenev, in Nanophysics: Coherence and Transport,
edited by H. Bouchiat et al. (Elsevier, New York, 2005),
p. 177.

[23] This behavior should be contrasted with the AA effect
[15,17], where the frequency integral comes from the
range T & ! & h=�.

[24] The evaluation of the integrals over momenta is substan-
tially simplified by the local nature of the vertex (in the
limit �d
 1). Transforming to the real space representa-
tion, the fourfold momentum integral in Eq. (6) reduces to

 

Z 1
0
drrIm�K0�r	�K0�r	��K0�r	��� � M�x; y�;

where K0�r	� is the modified Bessel function, which is
the 2D Fourier transform of the interaction potential (8).
Here 	 �

���������
�ix
p

and 	� �
������������������������������
�i��y� x=2�

p
, the radius is

normalized by
����������������������
D�d=�2T�

p
, and x � !=T; y � �=T.

Finally, the number of interest is given by

 � 2��3
ZZ 1

0
dxdyF 1�x; y�F 2�x; y�x

�2M�x; y� 
 0:27:

[25] I. V. Gornyi, A. G. Yashenkin, and D. V. Khveshchenko,
Phys. Rev. Lett. 83, 152 (1999).

[26] F. Zhou and Y. B. Kim, Phys. Rev. B 59, R7825 (1999).

PRL 100, 026805 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
18 JANUARY 2008

026805-4


